Please use this identifier to cite or link to this item: https://doi.org/10.1007/s00153-016-0501-z
Title: Fragments of Kripke–Platek set theory and the metamathematics of ? -recursion theory
Authors: Friedman, S.-D
Li, W 
Wong, T.L 
Issue Date: 2016
Publisher: Springer New York LLC
Citation: Friedman, S.-D, Li, W, Wong, T.L (2016). Fragments of Kripke–Platek set theory and the metamathematics of ? -recursion theory. Archive for Mathematical Logic 55 (43684) : 899-924. ScholarBank@NUS Repository. https://doi.org/10.1007/s00153-016-0501-z
Rights: Attribution 4.0 International
Abstract: The foundation scheme in set theory asserts that every nonempty class has an ? -minimal element. In this paper, we investigate the logical strength of the foundation principle in basic set theory and ?-recursion theory. We take KP set theory without foundation (called KP-) as the base theory. We show that KP- + ? 1-Foundation + V= L is enough to carry out finite injury arguments in ?-recursion theory, proving both the Friedberg-Muchnik theorem and the Sacks splitting theorem in this theory. In addition, we compare the strengths of some fragments of KP. © 2016, The Author(s).
Source Title: Archive for Mathematical Logic
URI: https://scholarbank.nus.edu.sg/handle/10635/179282
ISSN: 0933-5846
DOI: 10.1007/s00153-016-0501-z
Rights: Attribution 4.0 International
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1007_s00153-016-0501-z.pdf553.29 kBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons