Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-017-01719-6
Title: Total morphosynthesis of biomimetic prismatic-type CaCO3 thin films
Authors: Xiao, C
Li, M
Wang, B
Liu, M.-F
Shao, C
Pan, H
Lu, Y
Xu, B.-B
Li, S
Zhan, D
Jiang, Y
Tang, R
Liu, X.Y 
Cölfen, H
Keywords: biomaterial
calcium carbonate
mineral
silk fibroin
additive
biomineralization
calcium carbonate
coating
composite
film
hardness
polymer
stiffness
Young modulus
animal shell
Article
biomimetics
chemical phenomena
hardness
mineralization
nanofabrication
scanning electron microscopy
structure analysis
superoleophobicity
synthesis
thickness
transmission electron microscopy
X ray diffraction
Young modulus
Issue Date: 2017
Publisher: Nature Publishing Group
Citation: Xiao, C, Li, M, Wang, B, Liu, M.-F, Shao, C, Pan, H, Lu, Y, Xu, B.-B, Li, S, Zhan, D, Jiang, Y, Tang, R, Liu, X.Y, Cölfen, H (2017). Total morphosynthesis of biomimetic prismatic-type CaCO3 thin films. Nature Communications 8 (1) : 1398. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-017-01719-6
Rights: Attribution 4.0 International
Abstract: Biomimetic mineralization can lead to advanced crystalline composites with common chemicals under ambient conditions. An exceptional example is biomimetic nacre with its superior fracture toughness. The synthesis of the prismatic layer with stiffness and wear resistance nonetheless remains an elusive goal. Herein, we apply a biomimetic mineralization method to grow prismatic-type CaCO3 thin films, mimicking their biogenic counterparts found in mollusk shells with a three-step pathway: coating a polymer substrate, deposition of a granular transition layer, and mineralization of a prismatic overlayer. The synthetic prismatic overlayers exhibit structural similarity and comparable hardness and Young's modulus to their biogenic counterparts. Furthermore, employment of a biomacromolecular soluble additive, silk fibroin, in fabrication of the prismatic thin films leads to micro-/nano-textures with enhanced toughness and emerging under-water superoleophobicity. This study highlights the crucial role of the granular transition layer in promoting competition growth of the prismatic layer. © 2017 The Author(s).
Source Title: Nature Communications
URI: https://scholarbank.nus.edu.sg/handle/10635/178559
ISSN: 2041-1723
DOI: 10.1038/s41467-017-01719-6
Rights: Attribution 4.0 International
Appears in Collections:Staff Publications
Elements

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41467-017-01719-6.pdf2.72 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons