Please use this identifier to cite or link to this item: https://doi.org/10.3389/fnins.2018.00836
Title: A spiking neural network framework for robust sound classification
Authors: Wu, J
Chua, Y
Zhang, M 
Li, H 
Tan, K.C 
Keywords: article
classifier
decision making
human
learning
noise
Issue Date: 2018
Citation: Wu, J, Chua, Y, Zhang, M, Li, H, Tan, K.C (2018). A spiking neural network framework for robust sound classification. Frontiers in Neuroscience 12 (NOV) : 836. ScholarBank@NUS Repository. https://doi.org/10.3389/fnins.2018.00836
Abstract: Environmental sounds form part of our daily life. With the advancement of deep learning models and the abundance of training data, the performance of automatic sound classification (ASC) systems has improved significantly in recent years. However, the high computational cost, hence high power consumption, remains a major hurdle for large-scale implementation of ASC systems on mobile and wearable devices. Motivated by the observations that humans are highly effective and consume little power whilst analyzing complex audio scenes, we propose a biologically plausible ASC framework, namely SOM-SNN. This framework uses the unsupervised self-organizing map (SOM) for representing frequency contents embedded within the acoustic signals, followed by an event-based spiking neural network (SNN) for spatiotemporal spiking pattern classification. We report experimental results on the RWCP environmental sound and TIDIGITS spoken digits datasets, which demonstrate competitive classification accuracies over other deep learning and SNN-based models. The SOM-SNN framework is also shown to be highly robust to corrupting noise after multi-condition training, whereby the model is trained with noise-corrupted sound samples. Moreover, we discover the early decision making capability of the proposed framework: an accurate classification can be made with an only partial presentation of the input. Copyright © 2018 Wu, Chua, Zhang, Li and Tan.
Source Title: Frontiers in Neuroscience
URI: https://scholarbank.nus.edu.sg/handle/10635/176194
ISSN: 1662-4548
DOI: 10.3389/fnins.2018.00836
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_3389_fnins_2018_00836.pdf2.35 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.