Please use this identifier to cite or link to this item:
https://doi.org/10.1103/PhysRevB.86.184111
Title: | First-principles investigations of the atomic, electronic, and thermoelectric properties of equilibrium and strained Bi2Se3 and Bi2Te3 including van der Waals interactions | Authors: | Luo, Xin Sullivan, Michael B Quek, Su Ying |
Keywords: | Science & Technology Technology Physical Sciences Materials Science, Multidisciplinary Physics, Applied Physics, Condensed Matter Materials Science Physics 3-DIMENSIONAL TOPOLOGICAL INSULATOR GENERALIZED GRADIENT APPROXIMATION SINGLE DIRAC CONE BISMUTH TELLURIDE PERFORMANCE PRESSURE |
Issue Date: | 27-Nov-2012 | Publisher: | American Physical Society | Citation: | Luo, Xin, Sullivan, Michael B, Quek, Su Ying (2012-11-27). First-principles investigations of the atomic, electronic, and thermoelectric properties of equilibrium and strained Bi2Se3 and Bi2Te3 including van der Waals interactions. Physical review B: Condensed matter and materials physics 86 (18). ScholarBank@NUS Repository. https://doi.org/10.1103/PhysRevB.86.184111 | Abstract: | Bi2Se3 and Bi2Te3 are layered compounds of technological importance, being excellent thermoelectric materials as well as topological insulators. We report density functional theory calculations of the atomic, electronic, and thermoelectric properties of strained bulk and thin-film Bi2Se3 and Bi 2Te3, focusing on an appropriate description of van der Waals (vdW) interactions. The calculations show that the van der Waals density functional (vdW-DF) with Cooper's exchange (vdW-DFC09x) can reproduce closely the experimental interlayer distances in unstrained Bi 2Se3 and Bi2Te3. Interestingly, we predict atomic structures that are in much better agreement with the experimentally determined structure from Nakajima than that obtained from Wyckoff, especially for Bi2Se3, where the difference in atomic structures qualitatively changes the electronic band structure. The band structure obtained using the Nakajima structure and the vdW-DFC09x optimized structure are in much better agreement with previous reports of photoemission measurements, than that obtained using the Wyckoff structure. Using vdW-DFC09x to fully optimize atomic structures of bulk and thin-film Bi2Se3 and Bi2Te3 under different in-plane and uniaxial strains, we predict that the electronic bandgap of both the bulk materials and thin films decreases with tensile in-plane strain and increases with compressive in-plane strain. We also predict, using the semiclassical Boltzmann approach, that the magnitude of the n-type Seebeck coefficient of Bi2Te3 can be increased by the compressive in-plane strain while that of Bi2Se3 can be increased with tensile in-plane strain. Further, the in-plane power factor of n-doped Bi 2Se3 can be increased with compressive uniaxial strain while that of n-doped Bi2Te3 can be increased by compressive in-plane strain. Strain engineering thus provides a direct method to control the electronic and thermoelectric properties in these thermoelectric topological insulator materials. © 2012 American Physical Society. | Source Title: | Physical review B: Condensed matter and materials physics | URI: | https://scholarbank.nus.edu.sg/handle/10635/170932 | ISSN: | 10980121 1550235X |
DOI: | 10.1103/PhysRevB.86.184111 |
Appears in Collections: | Staff Publications Elements |
Show full item record
Files in This Item:
File | Description | Size | Format | Access Settings | Version | |
---|---|---|---|---|---|---|
1308.1523v1.pdf | 1.31 MB | Adobe PDF | OPEN | Post-print | View/Download |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.