Please use this identifier to cite or link to this item:
https://doi.org/10.1016/j.fuel.2020.118034
DC Field | Value | |
---|---|---|
dc.title | Development of a highly compact and robust chemical reaction mechanism for the oxidation of tetrahydrofurans under engine relevant conditions | |
dc.contributor.author | Wu, S | |
dc.contributor.author | Tay, KL | |
dc.contributor.author | Yu, W | |
dc.contributor.author | Lin, Q | |
dc.contributor.author | Li, H | |
dc.contributor.author | Zhao, F | |
dc.contributor.author | Yang, W | |
dc.date.accessioned | 2020-06-01T04:36:59Z | |
dc.date.available | 2020-06-01T04:36:59Z | |
dc.date.issued | 2020-09-15 | |
dc.identifier.citation | Wu, S, Tay, KL, Yu, W, Lin, Q, Li, H, Zhao, F, Yang, W (2020-09-15). Development of a highly compact and robust chemical reaction mechanism for the oxidation of tetrahydrofurans under engine relevant conditions. Fuel 276. ScholarBank@NUS Repository. https://doi.org/10.1016/j.fuel.2020.118034 | |
dc.identifier.issn | 00162361 | |
dc.identifier.uri | https://scholarbank.nus.edu.sg/handle/10635/168832 | |
dc.description.abstract | This work presents a compact and robust chemical reaction mechanism for modeling the combustion of saturated furans including tetrahydrofuran, 2-methyltetrahydrofuran and 2-buthyltetrahydrofuran under engine relevant conditions. A decoupling method is adopted to construct the mechanism. The oxidation reaction for the small species is described by a mature and detailed H2/CO/C1 sub-mechanism, based on which the skeletal sub-mechanisms for tetrahydrofuran, 2-methyltetrahydrofuran and 2-buthyltetrahydrofuran are incorporated via a compact yet robust C2-C3 sub-mechanism. The sub-mechanisms for the three tetrahydrofuranic fuel components are selected from the detailed chemical mechanisms in the literature via a series of species rate of production analysis, sensitivity analysis, isomer lumping and reaction lumping. The Arrhenius pre-exponential A factors for these selected reaction pathways are then optimized via a single objective genetic algorithm. The resulting mechanism is rather compact consisting of only 56 species among 183 reactions. The performance of the developed mechanism for predicting the combustion chemistry for the three fuel components has been evaluated against the experimental measurements in the literature. Reasonable agreement between the predicted ignition delay times, speciation profiles and laminar flame speeds with the experimental data is achieved for all the cases considered, indicating the high accuracy and robustness of the developed mechanism. © 2020 Elsevier Ltd | |
dc.publisher | Elsevier Ltd | |
dc.source | Elements | |
dc.subject | 2-buthyltetrahydrofuran | |
dc.subject | 2-methyltetrahydrofuran | |
dc.subject | Ignition characteristics | |
dc.subject | Laminar flame speeds | |
dc.subject | Species mole fraction | |
dc.subject | Tetrahydrofuran | |
dc.type | Article | |
dc.date.updated | 2020-05-30T02:02:53Z | |
dc.contributor.department | DEPT OF MECHANICAL ENGINEERING | |
dc.description.doi | 10.1016/j.fuel.2020.118034 | |
dc.description.sourcetitle | Fuel | |
dc.description.volume | 276 | |
dc.published.state | Published | |
Appears in Collections: | Staff Publications Elements Students Publications |
Show simple item record
Files in This Item:
File | Description | Size | Format | Access Settings | Version | |
---|---|---|---|---|---|---|
tetrahydrofurans final version.pdf | Accepted version | 2.52 MB | Adobe PDF | OPEN | Post-print | Available on 15-09-2022 |
SCOPUSTM
Citations
2
checked on Mar 3, 2021
Page view(s)
107
checked on Mar 5, 2021
Download(s)
1
checked on Mar 5, 2021
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.