Please use this identifier to cite or link to this item:
https://doi.org/10.1371/journal.ppat.1006203
Title: | The effective rate of influenza reassortment is limited during human infection | Authors: | Sobel Leonard A. McClain M.T. Smith G.J.D. Wentworth D.E. Halpin R.A. Lin X. Ransier A. Stockwell T.B. Das S.R. Gilbert A.S. Lambkin-Williams R. Ginsburg G.S. Woods C.W. Koelle K. Illingworth C.J.R. |
Keywords: | oseltamivir amino acid substitution Article Bayes theorem dispersity drug resistance gene frequency gene locus genetic association genetic reassortment haplotype human human cell influenza mutation nonhuman simulation single nucleotide polymorphism validation process virus load biological model genetic selection genetics influenza Orthomyxoviridae virology Humans Influenza, Human Models, Genetic Orthomyxoviridae Selection, Genetic |
Issue Date: | 2017 | Citation: | Sobel Leonard A., McClain M.T., Smith G.J.D., Wentworth D.E., Halpin R.A., Lin X., Ransier A., Stockwell T.B., Das S.R., Gilbert A.S., Lambkin-Williams R., Ginsburg G.S., Woods C.W., Koelle K., Illingworth C.J.R. (2017). The effective rate of influenza reassortment is limited during human infection. PLoS Pathogens 13 (2) : e1006203. ScholarBank@NUS Repository. https://doi.org/10.1371/journal.ppat.1006203 | Rights: | Attribution 4.0 International | Abstract: | We characterise the evolutionary dynamics of influenza infection described by viral sequence data collected from two challenge studies conducted in human hosts. Viral sequence data were collected at regular intervals from infected hosts. Changes in the sequence data observed across time show that the within-host evolution of the virus was driven by the reversion of variants acquired during previous passaging of the virus. Treatment of some patients with oseltamivir on the first day of infection did not lead to the emergence of drug resistance variants in patients. Using an evolutionary model, we inferred the effective rate of reassortment between viral segments, measuring the extent to which randomly chosen viruses within the host exchange genetic material. We find strong evidence that the rate of effective reassortment is low, such that genetic associations between polymorphic loci in different segments are preserved during the course of an infection in a manner not compatible with epistasis. Combining our evidence with that of previous studies we suggest that spatial heterogeneity in the viral population may reduce the extent to which reassortment is observed. Our results do not contradict previous findings of high rates of viral reassortment in vitro and in small animal studies, but indicate that in human hosts the effective rate of reassortment may be substantially more limited. ? 2017 Sobel Leonard et al. | Source Title: | PLoS Pathogens | URI: | https://scholarbank.nus.edu.sg/handle/10635/161899 | ISSN: | 15537366 | DOI: | 10.1371/journal.ppat.1006203 | Rights: | Attribution 4.0 International |
Appears in Collections: | Elements Staff Publications |
Show full item record
Files in This Item:
File | Description | Size | Format | Access Settings | Version | |
---|---|---|---|---|---|---|
10_1371_journal_ppat_1006203.pdf | 2.22 MB | Adobe PDF | OPEN | None | View/Download |
This item is licensed under a Creative Commons License