Please use this identifier to cite or link to this item: https://doi.org/10.1371/journal.pone.0167742
Title: Comparison of HapMap and 1000 genomes reference panels in a large-scale genome-wide association study
Authors: De Vries P.S.
Sabater-Lleal M.
Chasman D.I.
Trompet S.
Ahluwalia T.S.
Teumer A.
Kleber M.E.
Chen M.-H.
Wang J.J. 
Attia J.R.
Marioni R.E.
Steri M.
Weng L.-C.
Pool R.
Grossmann V.
Brody J.A.
Venturini C.
Tanaka T.
Rose L.M.
Oldmeadow C.
Mazur J.
Basu S.
Frånberg M.
Yang Q.
Ligthart S.
Hottenga J.J.
Rumley A.
Mulas A.
De Craen A.J.M.
Grotevendt A.
Taylor K.D.
Delgado G.E.
Kifley A.
Lopez L.M.
Berentzen T.L.
Mangino M.
Bandinelli S.
Morrison A.C.
Hamsten A.
Tofler G.
De Maat M.P.M.
Draisma H.H.M.
Lowe G.D.
Zoledziewska M.
Sattar N.
Lackner K.J.
Völker U.
McKnight B.
Huang J.
Holliday E.G.
McEvoy M.A.
Starr J.M.
Hysi P.G.
Hernandez D.G.
Guan W.
Rivadeneira F.
McArdle W.L.
Slagboom P.E.
Zeller T.
Psaty B.M.
Uitterlinden A.G.
De Geus E.J.C.
Stott D.J.
Binder H.
Hofman A.
Franco O.H.
Rotter J.I.
Ferrucci L.
Spector T.D.
Deary I.J.
März W.
Greinacher A.
Wild P.S.
Cucca F.
Boomsma D.I.
Watkins H.
Tang W.
Ridker P.M.
Jukema J.W.
Scott R.J.
Mitchell P.
Hansen T.
O'Donnell C.J.
Smith N.L.
Strachan D.P.
Dehghan A.
Keywords: fibrinogen
1000 genome project reference panel
Article
controlled study
gene dosage
genetic parameters
genetic variability
genome-wide association study
genotyping technique
haplotype map
human
reference value
single nucleotide polymorphism
genome-wide association study
Genome-Wide Association Study
HapMap Project
Humans
Issue Date: 2017
Citation: De Vries P.S., Sabater-Lleal M., Chasman D.I., Trompet S., Ahluwalia T.S., Teumer A., Kleber M.E., Chen M.-H., Wang J.J., Attia J.R., Marioni R.E., Steri M., Weng L.-C., Pool R., Grossmann V., Brody J.A., Venturini C., Tanaka T., Rose L.M., Oldmeadow C., Mazur J., Basu S., Frånberg M., Yang Q., Ligthart S., Hottenga J.J., Rumley A., Mulas A., De Craen A.J.M., Grotevendt A., Taylor K.D., Delgado G.E., Kifley A., Lopez L.M., Berentzen T.L., Mangino M., Bandinelli S., Morrison A.C., Hamsten A., Tofler G., De Maat M.P.M., Draisma H.H.M., Lowe G.D., Zoledziewska M., Sattar N., Lackner K.J., Völker U., McKnight B., Huang J., Holliday E.G., McEvoy M.A., Starr J.M., Hysi P.G., Hernandez D.G., Guan W., Rivadeneira F., McArdle W.L., Slagboom P.E., Zeller T., Psaty B.M., Uitterlinden A.G., De Geus E.J.C., Stott D.J., Binder H., Hofman A., Franco O.H., Rotter J.I., Ferrucci L., Spector T.D., Deary I.J., März W., Greinacher A., Wild P.S., Cucca F., Boomsma D.I., Watkins H., Tang W., Ridker P.M., Jukema J.W., Scott R.J., Mitchell P., Hansen T., O'Donnell C.J., Smith N.L., Strachan D.P., Dehghan A. (2017). Comparison of HapMap and 1000 genomes reference panels in a large-scale genome-wide association study. PLoS ONE 12 (1) : e0167742. ScholarBank@NUS Repository. https://doi.org/10.1371/journal.pone.0167742
Rights: CC0 1.0 Universal
Abstract: An increasing number of genome-wide association (GWA) studies are now using the higher resolution 1000 Genomes Project reference panel (1000G) for imputation, with the expectation that 1000G imputation will lead to the discovery of additional associated loci when compared to HapMap imputation. In order to assess the improvement of 1000G over HapMap imputation in identifying associated loci, we compared the results of GWA studies of circulating fibrinogen based on the two reference panels. Using both HapMap and 1000G imputation we performed a meta-analysis of 22 studies comprising the same 91,953 individuals. We identified six additional signals using 1000G imputation, while 29 loci were associated using both HapMap and 1000G imputation. One locus identified using HapMap imputation was not significant using 1000G imputation. The genome-wide significance threshold of 5×10-8 is based on the number of independent statistical tests using HapMap imputation, and 1000G imputation may lead to further independent tests that should be corrected for. When using a stricter Bonferroni correction for the 1000G GWA study (P-value < 2.5×10-8), the number of loci significant only using HapMap imputation increased to 4 while the number of loci significant only using 1000G decreased to 5. In conclusion, 1000G imputation enabled the identification of 20% more loci than HapMap imputation, although the advantage of 1000G imputation became less clear when a stricter Bonferroni correction was used. More generally, our results provide insights that are applicable to the implementation of other dense reference panels that are under development.
Source Title: PLoS ONE
URI: https://scholarbank.nus.edu.sg/handle/10635/161537
ISSN: 19326203
DOI: 10.1371/journal.pone.0167742
Rights: CC0 1.0 Universal
Appears in Collections:Staff Publications
Elements

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1371_journal_pone_0167742.pdf1.44 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons