Please use this identifier to cite or link to this item:
https://scholarbank.nus.edu.sg/handle/10635/116678
Title: | A graph-based approach to commonsense concept extraction and semantic similarity detection | Authors: | Rajagopal, D. Cambria, E. Olsher, D. Kwok, K. |
Keywords: | Ai Commonsense knowledge representation and reasoning Natural language processing Semantic similarity |
Issue Date: | 2013 | Citation: | Rajagopal, D., Cambria, E., Olsher, D., Kwok, K. (2013). A graph-based approach to commonsense concept extraction and semantic similarity detection. WWW 2013 Companion - Proceedings of the 22nd International Conference on World Wide Web : 565-570. ScholarBank@NUS Repository. | Abstract: | Commonsense knowledge representation and reasoning support a wide variety of potential applications in fields such as document auto-categorization, Web search enhancement, topic gisting, social process modeling, and concept-level opinion and sentiment analysis. Solutions to these problems, however, demand robust knowledge bases capable of supporting exible, nuanced reasoning. Populating such knowledge bases is highly time-consuming, making it necessary to develop techniques for deconstructing natural language texts into commonsense concepts. In this work, we propose an approach for effective multi-word commonsense expression extraction from unrestricted English text, in addition to a semantic similarity detection technique allowing additional matches to be found for specific concepts not already present in knowledge bases. | Source Title: | WWW 2013 Companion - Proceedings of the 22nd International Conference on World Wide Web | URI: | http://scholarbank.nus.edu.sg/handle/10635/116678 | ISBN: | 9781450320382 |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.