Please use this identifier to cite or link to this item: https://doi.org/10.1103/PhysRevLett.107.207210
Title: Proposed spin amplification for magnetic sensors employing crystal defects
Authors: Schaffry, M.
Gauger, E.M.
Morton, J.J.L.
Benjamin, S.C. 
Issue Date: 10-Nov-2011
Citation: Schaffry, M., Gauger, E.M., Morton, J.J.L., Benjamin, S.C. (2011-11-10). Proposed spin amplification for magnetic sensors employing crystal defects. Physical Review Letters 107 (20) : -. ScholarBank@NUS Repository. https://doi.org/10.1103/PhysRevLett.107.207210
Abstract: Recently there have been several theoretical and experimental studies of the prospects for magnetic field sensors based on crystal defects, especially nitrogen vacancy (NV) centers in diamond. Such systems could potentially be incorporated into an atomic force microscopy-like apparatus in order to map the magnetic properties of a surface at the single spin level. In this Letter we propose an augmented sensor consisting of an NV center for readout and an "amplifier" spin system that directly senses the local magnetic field. Our calculations show that this hybrid structure has the potential to detect magnetic moments with a sensitivity and spatial resolution far beyond that of a simple NV center, and indeed this may be the physical limit for sensors of this class. © 2011 American Physical Society.
Source Title: Physical Review Letters
URI: http://scholarbank.nus.edu.sg/handle/10635/116541
ISSN: 00319007
DOI: 10.1103/PhysRevLett.107.207210
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.