Please use this identifier to cite or link to this item:
https://doi.org/10.1109/TIT.2013.2259138
Title: | All the stabilizer codes of distance 3 | Authors: | Yu, S. Bierbrauer, J. Dong, Y. Chen, Q. Oh, C.H. |
Keywords: | 1-error correcting stabilizer codes optimal codes quantum error correction quantum Hamming bound |
Issue Date: | 2013 | Citation: | Yu, S., Bierbrauer, J., Dong, Y., Chen, Q., Oh, C.H. (2013). All the stabilizer codes of distance 3. IEEE Transactions on Information Theory 59 (8) : 5179-5185. ScholarBank@NUS Repository. https://doi.org/10.1109/TIT.2013.2259138 | Abstract: | We give necessary and sufficient conditions for the existence of stabilizer codes [[n,k,3]] of distance 3 for qubits: n-k [log 2(3n+1)] +\epsilon n, where n=1 if n=8 4m-1 3+± 1,2\ or n= 4m+2-1 3-1,2,3 for some integer m 1 and n=0 otherwise. Or equivalently, a code [[n,n-r,3]] exists if and only if n (4r-1)/3 (4r-1)/3-n\notin \lbrace 1,2,3\rbrace for even r and n 8(4 r-3-1)/3, 8(4r-3-1)/3-n\ne 1 for odd r. Given an arbitrary length n, we present an explicit construction for an optimal quantum stabilizer code of distance 3 that saturates the above bound. © 1963-2012 IEEE. | Source Title: | IEEE Transactions on Information Theory | URI: | http://scholarbank.nus.edu.sg/handle/10635/116215 | ISSN: | 00189448 | DOI: | 10.1109/TIT.2013.2259138 |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.