Please use this identifier to cite or link to this item: https://doi.org/10.1109/TIT.2013.2259138
Title: All the stabilizer codes of distance 3
Authors: Yu, S. 
Bierbrauer, J.
Dong, Y.
Chen, Q. 
Oh, C.H. 
Keywords: 1-error correcting stabilizer codes
optimal codes
quantum error correction
quantum Hamming bound
Issue Date: 2013
Citation: Yu, S., Bierbrauer, J., Dong, Y., Chen, Q., Oh, C.H. (2013). All the stabilizer codes of distance 3. IEEE Transactions on Information Theory 59 (8) : 5179-5185. ScholarBank@NUS Repository. https://doi.org/10.1109/TIT.2013.2259138
Abstract: We give necessary and sufficient conditions for the existence of stabilizer codes [[n,k,3]] of distance 3 for qubits: n-k [log 2(3n+1)] +\epsilon n, where n=1 if n=8 4m-1 3+± 1,2\ or n= 4m+2-1 3-1,2,3 for some integer m 1 and n=0 otherwise. Or equivalently, a code [[n,n-r,3]] exists if and only if n (4r-1)/3 (4r-1)/3-n\notin \lbrace 1,2,3\rbrace for even r and n 8(4 r-3-1)/3, 8(4r-3-1)/3-n\ne 1 for odd r. Given an arbitrary length n, we present an explicit construction for an optimal quantum stabilizer code of distance 3 that saturates the above bound. © 1963-2012 IEEE.
Source Title: IEEE Transactions on Information Theory
URI: http://scholarbank.nus.edu.sg/handle/10635/116215
ISSN: 00189448
DOI: 10.1109/TIT.2013.2259138
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

10
checked on Aug 15, 2018

WEB OF SCIENCETM
Citations

8
checked on Aug 15, 2018

Page view(s)

44
checked on Aug 3, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.