Please use this identifier to cite or link to this item:
Title: Fabrication of 2D and 3D electromagnetic metamaterials for the terahertz range
Authors: Casse, B.D.F. 
Moser, H.O. 
Jian, L.K. 
Bahou, M. 
Wilhelmi, O.
Saw, B.T. 
Gu, P.D. 
Issue Date: 1-Apr-2006
Citation: Casse, B.D.F., Moser, H.O., Jian, L.K., Bahou, M., Wilhelmi, O., Saw, B.T., Gu, P.D. (2006-04-01). Fabrication of 2D and 3D electromagnetic metamaterials for the terahertz range. Journal of Physics: Conference Series 34 (1) : 885-890. ScholarBank@NUS Repository.
Abstract: This paper addresses the 2D and 3D micro- and nanofabrication of ElectroMagnetic MetaMaterials (EM3) for the terahertz range. EM 3 refers to artifbial composite materials which consist of a collection of repeated metal elements designed to have a strong response to applied electromagnetic felds, so that near resonance both the effective permittivity and magnetic permeability ν become simultaneously negative. This unusual situation leads to exotic consequences such as a negative index of refraction and an inverse Doppler and Cerenkov effect. EM3 fabricated so far have been mostly two-dimensional and in this respect are highly anisotropic. By anisotropic, it is inferred that the response of the system depends on the direction of illumination. The anisotropic nature of the metamaterials impedes eventual real-life applications of the negative media as it places constraints on the impinging electromagnetic waves. Ways of producing three-dimensional (3D) or more isotropic EM3 by means of tilted x-ray exposures will be introduced. Basic geometry tells us that if the structures are inclined at 30-45°, this would lead to an improvement of the coupling of the vector by 50-70% © 2006 IOP Publishing Ltd.
Source Title: Journal of Physics: Conference Series
ISSN: 17426588
DOI: 10.1088/1742-6596/34/1/147
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.