Please use this identifier to cite or link to this item:
Title: Programmable trap geometries with superconducting atom chips
Authors: Müller, T. 
Zhang, B.
Fermani, R. 
Chan, K.S.
Lim, M.J.
Dumke, R.
Issue Date: 24-May-2010
Citation: Müller, T., Zhang, B., Fermani, R., Chan, K.S., Lim, M.J., Dumke, R. (2010-05-24). Programmable trap geometries with superconducting atom chips. Physical Review A - Atomic, Molecular, and Optical Physics 81 (5) : -. ScholarBank@NUS Repository.
Abstract: We employ the hysteretic behavior of a superconducting thin film in the remanent state to generate different traps and flexible magnetic potentials for ultracold atoms. The trap geometry can be programed by externally applied fields. This approach for atom optics is demonstrated by three different trap types realized on a single microstructure: a Z-type trap, a double trap, and a bias-field-free trap. Our studies show that superconductors in the remanent state provide a versatile platform for atom optics and applications in ultracold quantum gases. © 2010 The American Physical Society.
Source Title: Physical Review A - Atomic, Molecular, and Optical Physics
ISSN: 10502947
DOI: 10.1103/PhysRevA.81.053624
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.