Please use this identifier to cite or link to this item:
https://doi.org/10.1103/PhysRevA.81.053624
Title: | Programmable trap geometries with superconducting atom chips | Authors: | Müller, T. Zhang, B. Fermani, R. Chan, K.S. Lim, M.J. Dumke, R. |
Issue Date: | 24-May-2010 | Citation: | Müller, T., Zhang, B., Fermani, R., Chan, K.S., Lim, M.J., Dumke, R. (2010-05-24). Programmable trap geometries with superconducting atom chips. Physical Review A - Atomic, Molecular, and Optical Physics 81 (5) : -. ScholarBank@NUS Repository. https://doi.org/10.1103/PhysRevA.81.053624 | Abstract: | We employ the hysteretic behavior of a superconducting thin film in the remanent state to generate different traps and flexible magnetic potentials for ultracold atoms. The trap geometry can be programed by externally applied fields. This approach for atom optics is demonstrated by three different trap types realized on a single microstructure: a Z-type trap, a double trap, and a bias-field-free trap. Our studies show that superconductors in the remanent state provide a versatile platform for atom optics and applications in ultracold quantum gases. © 2010 The American Physical Society. | Source Title: | Physical Review A - Atomic, Molecular, and Optical Physics | URI: | http://scholarbank.nus.edu.sg/handle/10635/115248 | ISSN: | 10502947 | DOI: | 10.1103/PhysRevA.81.053624 |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.