Please use this identifier to cite or link to this item:
Title: Effects of quantum coherence in metalloprotein electron transfer
Authors: Dorner, R.
Goold, J.
Heaney, L. 
Farrow, T.
Vedral, V. 
Issue Date: 26-Sep-2012
Citation: Dorner, R., Goold, J., Heaney, L., Farrow, T., Vedral, V. (2012-09-26). Effects of quantum coherence in metalloprotein electron transfer. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 86 (3) : -. ScholarBank@NUS Repository.
Abstract: Many intramolecular electron transfer (ET) reactions in biology are mediated by metal centers in proteins. This process is commonly described by a model of diffusive hopping according to the semiclassical theories of Marcus and Hopfield. However, recent studies have raised the possibility that nontrivial quantum mechanical effects play a functioning role in certain biomolecular processes. Here, we investigate the potential effects of quantum coherence in biological ET by extending the semiclassical model to allow for the possibility of quantum coherent phenomena using a quantum master equation based on the Holstein Hamiltonian. We test the model on the structurally defined chain of seven iron-sulfur clusters in nicotinamide adenine dinucleotide plus hydrogen:ubiquinone oxidoreductase (complex I), a crucial respiratory enzyme and one of the longest chains of metal centers in biology. Using experimental parameters where possible, we find that, in limited circumstances, a small quantum mechanical contribution can provide a marked increase in the ET rate above the semiclassical diffusive-hopping rate. Under typical biological conditions, our model reduces to well-known diffusive behavior. © 2012 American Physical Society.
Source Title: Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
ISSN: 15393755
DOI: 10.1103/PhysRevE.86.031922
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.