Please use this identifier to cite or link to this item: https://doi.org/10.1007/s10801-011-0298-0
Title: Specht modules with abelian vertices
Authors: Lim, K.J. 
Keywords: Complexity
Specht module
Vertex
Issue Date: Feb-2012
Citation: Lim, K.J. (2012-02). Specht modules with abelian vertices. Journal of Algebraic Combinatorics 35 (1) : 157-171. ScholarBank@NUS Repository. https://doi.org/10.1007/s10801-011-0298-0
Abstract: In this article, we consider indecomposable Specht modules with abelian vertices. We show that the corresponding partitions are necessarily p 2-cores where p is the characteristic of the underlying field. Furthermore, in the case of p≥3, or p=2 and μ is 2-regular, we show that the complexity of the Specht module S μ is precisely the p-weight of the partition μ. In the latter case, we classify Specht modules with abelian vertices. For some applications of the above results, we extend a result of M. Wildon and compute the vertices of the Specht module S (pp) for p≥3. © 2011 Springer Science+Business Media, LLC.
Source Title: Journal of Algebraic Combinatorics
URI: http://scholarbank.nus.edu.sg/handle/10635/104179
ISSN: 09259899
DOI: 10.1007/s10801-011-0298-0
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

5
checked on Nov 29, 2021

WEB OF SCIENCETM
Citations

5
checked on Nov 19, 2021

Page view(s)

66
checked on Nov 18, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.