Please use this identifier to cite or link to this item: https://doi.org/10.1007/s10801-011-0298-0
Title: Specht modules with abelian vertices
Authors: Lim, K.J. 
Keywords: Complexity
Specht module
Vertex
Issue Date: Feb-2012
Citation: Lim, K.J. (2012-02). Specht modules with abelian vertices. Journal of Algebraic Combinatorics 35 (1) : 157-171. ScholarBank@NUS Repository. https://doi.org/10.1007/s10801-011-0298-0
Abstract: In this article, we consider indecomposable Specht modules with abelian vertices. We show that the corresponding partitions are necessarily p 2-cores where p is the characteristic of the underlying field. Furthermore, in the case of p≥3, or p=2 and μ is 2-regular, we show that the complexity of the Specht module S μ is precisely the p-weight of the partition μ. In the latter case, we classify Specht modules with abelian vertices. For some applications of the above results, we extend a result of M. Wildon and compute the vertices of the Specht module S (pp) for p≥3. © 2011 Springer Science+Business Media, LLC.
Source Title: Journal of Algebraic Combinatorics
URI: http://scholarbank.nus.edu.sg/handle/10635/104179
ISSN: 09259899
DOI: 10.1007/s10801-011-0298-0
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.