Please use this identifier to cite or link to this item:
Title: On functorial decompositions of self-smash products
Authors: Selick, P.
Wu, J. 
Issue Date: Aug-2003
Citation: Selick, P., Wu, J. (2003-08). On functorial decompositions of self-smash products. Manuscripta Mathematica 111 (4) : 435-457. ScholarBank@NUS Repository.
Abstract: We give a decomposition formula for n -fold self smash of a two-cell suspension X localized at 2. The mod 2 homology of each factor in the decomposition is explicitly given as a module over the Steenrod algebra and in the case where X is formed by suspending one of ℝP2, ℂP2, ℍP2 or double-struck K sign P2, this is a complete decomposition into indecomposable pieces. The method has consequences in the modular representation theory of the symmetric group where it leads to a computation of the submatrix for the decomposition matrix of the group algebra ℤ/2[Sn] which correspond to partitions of length 2. In particular this yields a derivation of the explicit formula due to Erdmann which gives the multiplicities in the decomposition of ℤ/2[S n] of the indecomposable projective modules which correspond to those partitions.
Source Title: Manuscripta Mathematica
ISSN: 00252611
DOI: 10.1007/s00229-002-0353-1
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Sep 23, 2022


checked on Sep 23, 2022

Page view(s)

checked on Sep 22, 2022

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.