Citations
Altmetric:
Alternative Title
Abstract
Electromigration-induced failure (EIF) lifetime characteristics of FM/Cu/FM (FM: NiFe or Co) tri-layers, which are currently used in GMR spin-valve read sensors, have been investigated to verify the fundamental failure mechanisms. It is found that the lifetime of NiFe/Cu/NiFe tri-layers was dramatically increased by decreasing the Cu spacer thickness. The obvious shorter lifetime of NiFe/Cu/NiFe tri-layers compared to that of Co/Cu/Co tri-layers was mainly thought to be attributed to the formation of current paths resulted from the electromigration-induced Cu interdiffusion into the top or bottom NiFe layer during electrical stressing caused by the Ni-Cu intermixing. The activation energy (Ea) and current density factor, "n" value of the NiFe/Cu/NiFe tri-layers were found to be 0.23-0.25 eV and 1.23-1.32, respectively. It is suggested that the control of Cu spacer interdiffusion and chemical roughness at the FM/Cu interface is crucial in determining the electrical reliability of FM/Cu/FM based GMR spin valve read sensors. © 2007 IEEE.
Keywords
Cu spacer microstructure, Electromigration, FM/Cu spacer interface, FM/Cu/FM tri-layers, Interdiffusion of Cu spacer
Source Title
IEEE Transactions on Magnetics
Publisher
Series/Report No.
Collections
Rights
Date
2007-06
DOI
10.1109/TMAG.2007.893118
Type
Conference Paper