Please use this identifier to cite or link to this item:
https://scholarbank.nus.edu.sg/handle/10635/98159
DC Field | Value | |
---|---|---|
dc.title | Symmetric multiplets in quantum algebras | |
dc.contributor.author | Kwek, L.C. | |
dc.contributor.author | Oh, C.H. | |
dc.contributor.author | Singh, K. | |
dc.date.accessioned | 2014-10-16T09:43:42Z | |
dc.date.available | 2014-10-16T09:43:42Z | |
dc.date.issued | 1996 | |
dc.identifier.citation | Kwek, L.C.,Oh, C.H.,Singh, K. (1996). Symmetric multiplets in quantum algebras. Modern Physics Letters A 11 (27) : 2193-2198. ScholarBank@NUS Repository. | |
dc.identifier.issn | 02177323 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/98159 | |
dc.description.abstract | We consider a modified version of the coproduct for U(suq(2)) and show that in the limit q → 1, there exists an essentially non-cocommutative coproduct. We study the implications of this non-cocommutativity for a system of two spin-1/2 particles. Here it is shown that, unlike the usual case, this nontrivial coproduct allows for symmetric and antisymmetric states to be present in the multiplet. We surmise that our analysis could be related to the ferromagnetic and antiferromagnetic cases of the Heisenberg magnets. | |
dc.source | Scopus | |
dc.type | Article | |
dc.contributor.department | PHYSICS | |
dc.description.sourcetitle | Modern Physics Letters A | |
dc.description.volume | 11 | |
dc.description.issue | 27 | |
dc.description.page | 2193-2198 | |
dc.description.coden | MPLAE | |
dc.identifier.isiut | NOT_IN_WOS | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.