Please use this identifier to cite or link to this item: https://doi.org/10.1103/PhysRevLett.107.020404
DC FieldValue
dc.titleQuantum-state reconstruction by maximizing likelihood and entropy
dc.contributor.authorTeo, Y.S.
dc.contributor.authorZhu, H.
dc.contributor.authorEnglert, B.-G.
dc.contributor.authorŘeháček, J.
dc.contributor.authorHradil, Z.
dc.date.accessioned2014-10-16T09:38:32Z
dc.date.available2014-10-16T09:38:32Z
dc.date.issued2011-07-08
dc.identifier.citationTeo, Y.S., Zhu, H., Englert, B.-G., Řeháček, J., Hradil, Z. (2011-07-08). Quantum-state reconstruction by maximizing likelihood and entropy. Physical Review Letters 107 (2) : -. ScholarBank@NUS Repository. https://doi.org/10.1103/PhysRevLett.107.020404
dc.identifier.issn00319007
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/97719
dc.description.abstractQuantum-state reconstruction on a finite number of copies of a quantum system with informationally incomplete measurements, as a rule, does not yield a unique result. We derive a reconstruction scheme where both the likelihood and the von Neumann entropy functionals are maximized in order to systematically select the most-likely estimator with the largest entropy, that is, the least-bias estimator, consistent with a given set of measurement data. This is equivalent to the joint consideration of our partial knowledge and ignorance about the ensemble to reconstruct its identity. An interesting structure of such estimators will also be explored. © 2011 American Physical Society.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1103/PhysRevLett.107.020404
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentPHYSICS
dc.description.doi10.1103/PhysRevLett.107.020404
dc.description.sourcetitlePhysical Review Letters
dc.description.volume107
dc.description.issue2
dc.description.page-
dc.description.codenPRLTA
dc.identifier.isiut000292544000002
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.