Please use this identifier to cite or link to this item:
Title: Molecular wires acting as quantum heat ratchets
Authors: Zhan, F.
Li, N.
Kohler, S.
Hänggi, P. 
Issue Date: 14-Dec-2009
Citation: Zhan, F., Li, N., Kohler, S., Hänggi, P. (2009-12-14). Molecular wires acting as quantum heat ratchets. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 80 (6) : -. ScholarBank@NUS Repository.
Abstract: We explore heat transfer in molecular junctions between two leads in the absence of a finite net thermal bias. The application of an unbiased time-periodic temperature modulation of the leads entails a dynamical breaking of reflection symmetry, such that a directed heat current may emerge (ratchet effect). In particular, we consider two cases of adiabatically slow driving, namely, (i) periodic temperature modulation of only one lead and (ii) temperature modulation of both leads with an ac driving that contains a second harmonic, thus, generating harmonic mixing. Both scenarios yield sizable directed heat currents, which should be detectable with present techniques. Adding a static thermal bias allows one to compute the heat current-thermal load characteristics, which includes the ratchet effect of negative thermal bias with positive-valued heat flow against the thermal bias, up to the thermal stop load. The ratchet heat flow in turn generates also an electric current. An applied electric stop voltage, yielding effective zero electric current flow, then mimics a solely heat-ratchet-induced thermopower ("ratchet Seebeck effect"), although no net thermal bias is acting. Moreover, we find that the relative phase between the two harmonics in scenario (ii) enables steering the net heat current into a direction of choice. © 2009 The American Physical Society.
Source Title: Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
ISSN: 15393755
DOI: 10.1103/PhysRevE.80.061115
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Jan 14, 2021


checked on Jan 14, 2021

Page view(s)

checked on Jan 17, 2021

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.