Please use this identifier to cite or link to this item: https://doi.org/10.1088/1674-1056/22/9/096101
Title: Mechanical behavior of Cu-Zr bulk metallic glasses (BMGs): A molecular dynamics approach
Authors: Imran, M.
Hussain, F.
Rashid, M.
Cai, Y. 
Ahmad, S.A.
Keywords: Bulk metallic glasses (BMGs)
deformation
nanoindentation
quenching rate
Issue Date: Sep-2013
Citation: Imran, M., Hussain, F., Rashid, M., Cai, Y., Ahmad, S.A. (2013-09). Mechanical behavior of Cu-Zr bulk metallic glasses (BMGs): A molecular dynamics approach. Chinese Physics B 22 (9) : -. ScholarBank@NUS Repository. https://doi.org/10.1088/1674-1056/22/9/096101
Abstract: In the present work, three-dimensional molecular dynamics simulation is carried out to elucidate the nanoindentation behaviors of CuZr Bulk metallic glasses (BMGs). The substrate indenter system is modeled using hybrid interatomic potentials including both many-body Finnis Sinclair (FS) and two-body Morse potentials. A spherical rigid indenter (diameter = 60 Å(1 Å = 10-10 m)) is employed to simulate the indentation process. Three samples of BMGs including Cu25Zr75, Cu 50Zr50, and Cu75Zr25 are designed and the metallic glasses are formed by rapid cooling from the melt state at about 2000 K. The radial distribution functions are analyzed to reveal the dynamical evolution of the structure of the atoms with different compositions and different cooling rates. The mechanical behavior can be well understood in terms of load-depth curves and Hardness-depth curves during the nanoindentation process. Our results indicate a positive linear relationship between the hardness and the Cu concentration of the BMG sample. To reveal the importance of cooling rate provided during the processing of BMGs, we investigate the indentation behaviors of Cu50Zr50 at three different quenching rates. Nanoindentation results and radial distribution function (RDF) curves at room temperature indicate that a sample can be made harder and more stable by slowing down the quenching rate. © 2013 Chinese Physical Society and IOP Publishing Ltd.
Source Title: Chinese Physics B
URI: http://scholarbank.nus.edu.sg/handle/10635/97161
ISSN: 16741056
DOI: 10.1088/1674-1056/22/9/096101
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.