Please use this identifier to cite or link to this item:
Title: From kinetic-structure analysis to engineering crystalline fiber networks in soft materials
Authors: Wang, R.-Y.
Wang, P.
Li, J.-L. 
Yuan, B. 
Liu, Yu.
Li, L.
Liu, X.-Y. 
Issue Date: 7-Mar-2013
Citation: Wang, R.-Y., Wang, P., Li, J.-L., Yuan, B., Liu, Yu., Li, L., Liu, X.-Y. (2013-03-07). From kinetic-structure analysis to engineering crystalline fiber networks in soft materials. Physical Chemistry Chemical Physics 15 (9) : 3313-3319. ScholarBank@NUS Repository.
Abstract: Understanding the role of kinetics in fiber network microstructure formation is of considerable importance in engineering gel materials to achieve their optimized performances/functionalities. In this work, we present a new approach for kinetic-structure analysis for fibrous gel materials. In this method, kinetic data is acquired using a rheology technique and is analyzed in terms of an extended Dickinson model in which the scaling behaviors of dynamic rheological properties in the gelation process are taken into account. It enables us to extract the structural parameter, i.e. the fractal dimension, of a fibrous gel from the dynamic rheological measurement of the gelation process, and to establish the kinetic-structure relationship suitable for both dilute and concentrated gelling systems. In comparison to the fractal analysis method reported in a previous study, our method is advantageous due to its general validity for a wide range of fractal structures of fibrous gels, from a highly compact network of the spherulitic domains to an open fibrous network structure. With such a kinetic-structure analysis, we can gain a quantitative understanding of the role of kinetic control in engineering the microstructure of the fiber network in gel materials. This journal is © 2013 the Owner Societies.
Source Title: Physical Chemistry Chemical Physics
ISSN: 14639076
DOI: 10.1039/c2cp43747c
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Jan 23, 2023


checked on Jan 23, 2023

Page view(s)

checked on Jan 26, 2023

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.