Please use this identifier to cite or link to this item: https://doi.org/10.1039/c2cp40603a
Title: Carbon coated nano-LiTi 2(PO 4) 3 electrodes for non-aqueous hybrid supercapacitors
Authors: Aravindan, V.
Chuiling, W.
Reddy, M.V. 
Rao, G.V.S.
Chowdari, B.V.R. 
Madhavi, S.
Issue Date: 28-Apr-2012
Citation: Aravindan, V., Chuiling, W., Reddy, M.V., Rao, G.V.S., Chowdari, B.V.R., Madhavi, S. (2012-04-28). Carbon coated nano-LiTi 2(PO 4) 3 electrodes for non-aqueous hybrid supercapacitors. Physical Chemistry Chemical Physics 14 (16) : 5808-5814. ScholarBank@NUS Repository. https://doi.org/10.1039/c2cp40603a
Abstract: The Pechini type polymerizable complex decomposition method is employed to prepare LiTi 2(PO 4) 3 at 1000 °C in air. High energy ball milling followed by carbon coating by the glucose-method yielded C-coated nano-LiTi 2(PO 4) 3 (LTP) with a crystallite size of 80(±5) nm. The phase is characterized by X-ray diffraction, Rietveld refinement, thermogravimetry, SEM, HR-TEM and Raman spectra. Lithium cycling properties of LTP show that 1.75 moles of Li (∼121 mA h g -1 at 15 mA g -1 current) per formula unit can be reversibly cycled between 2 and 3.4 V vs. Li with 83% capacity retention after 70 cycles. Cyclic voltammograms (CV) reveal the two-phase reaction mechanism during Li insertion/extraction. A hybrid electrochemical supercapacitor (HEC) with LTP as negative electrode and activated carbon (AC) as positive electrode in non-aqueous electrolyte is studied by CV at various scan rates and by galvanostatic cycling at various current rates up to 1000 cycles in the range 0-3 V. Results show that the HEC delivers a maximum energy density of 14 W h kg -1 and a power density of 180 W kg -1. © the Owner Societies 2012.
Source Title: Physical Chemistry Chemical Physics
URI: http://scholarbank.nus.edu.sg/handle/10635/95921
ISSN: 14639076
DOI: 10.1039/c2cp40603a
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

228
checked on Jun 1, 2023

WEB OF SCIENCETM
Citations

224
checked on Jun 1, 2023

Page view(s)

212
checked on May 25, 2023

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.