Please use this identifier to cite or link to this item: https://doi.org/10.1021/nl200587h
DC FieldValue
dc.titleGiant two-photon absorption in bilayer graphene
dc.contributor.authorYang, H.
dc.contributor.authorFeng, X.
dc.contributor.authorWang, Q.
dc.contributor.authorHuang, H.
dc.contributor.authorChen, W.
dc.contributor.authorWee, A.T.S.
dc.contributor.authorJi, W.
dc.date.accessioned2014-10-16T08:29:36Z
dc.date.available2014-10-16T08:29:36Z
dc.date.issued2011-07-13
dc.identifier.citationYang, H., Feng, X., Wang, Q., Huang, H., Chen, W., Wee, A.T.S., Ji, W. (2011-07-13). Giant two-photon absorption in bilayer graphene. Nano Letters 11 (7) : 2622-2627. ScholarBank@NUS Repository. https://doi.org/10.1021/nl200587h
dc.identifier.issn15306984
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/93888
dc.description.abstractWe present a quantum perturbation theory on two-photon absorption (2PA) in monolayer and bilayer graphene which is Bernal-stacked. The theory shows that 2PA is significantly greater in bilayer graphene than monolayer graphene in the visible and infrared spectrum (up to 3 μm) with a resonant 2PA coefficient of up to ∼0.2 cm/W located at half of the bandgap energy, γ1 = 0.4 eV. In the visible and terahertz region, 2PA exhibits a light frequency dependence of ω-3 in bilayer graphene, while it is proportional to ω-4 for monolayer graphene at all photon energies. Within the same order of magnitude, the 2PA theory is in agreement with our Z-scan measurements on high-quality epitaxial bilayer graphene deposited on SiC substrate at light wavelength of 780 and 1100 nm. © 2011 American Chemical Society.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1021/nl200587h
dc.sourceScopus
dc.subjectballistic photocurrent
dc.subjectBilayer graphene
dc.subjectsecond-order perturbation thoery
dc.subjecttwo-photon absorption
dc.subjectZ-scan
dc.typeArticle
dc.contributor.departmentPHYSICS
dc.contributor.departmentCHEMISTRY
dc.description.doi10.1021/nl200587h
dc.description.sourcetitleNano Letters
dc.description.volume11
dc.description.issue7
dc.description.page2622-2627
dc.identifier.isiut000292849400009
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.