Please use this identifier to cite or link to this item: https://doi.org/10.1016/S0376-7388(98)00225-7
DC FieldValue
dc.titleFabrication of multi-layer composite hollow fiber membranes for gas separation
dc.contributor.authorChung, T.-S.
dc.contributor.authorShieh, J.-J.
dc.contributor.authorLau, W.W.Y.
dc.contributor.authorSrinivasan, M.P.
dc.contributor.authorPaul, D.R.
dc.date.accessioned2014-10-09T09:53:39Z
dc.date.available2014-10-09T09:53:39Z
dc.date.issued1999-01-20
dc.identifier.citationChung, T.-S., Shieh, J.-J., Lau, W.W.Y., Srinivasan, M.P., Paul, D.R. (1999-01-20). Fabrication of multi-layer composite hollow fiber membranes for gas separation. Journal of Membrane Science 152 (2) : 211-225. ScholarBank@NUS Repository. https://doi.org/10.1016/S0376-7388(98)00225-7
dc.identifier.issn03767388
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/91985
dc.description.abstractUsing multilayer composite hollow fiber membranes consisting of a sealing layer (silicone rubber), a selective layer (poly(4-vinylpyridine)), and a support substrate (polysulfone), we have determined the key parameters for fabricating high-performance multilayer hollow fiber composite membranes for gas separation. Surface roughness and surface porosity of the support substrate play two crucial roles in successful membrane fabrication. Substrates with smooth surfaces tend to reduce defects in the selective layer to yield composite membranes of better separation performance. Substrates with a high surface porosity can enhance the permeance of composite membranes. However, SEM micrographs show that, when preparing an asymmetric microporous membrane substrate using a phase-inversion process, the higher the surface porosity, the greater the surface roughness. How to optimize and compromise the effect of both factors with respect to permselectivity is a critical issue for the selection of support substrates to fabricate high-performance multilayer composite membranes. For a highly permeable support substrate, pre-wetting shows no significant improvement in membrane performance. Composite hollow fiber membranes made from a composition of silicone rubber/0.1-0.5wt% poly(4-vinylpyridine)/25wt% polysulfone show impressive separation performance. Gas permeances of around 100 GPU for H2, 40 GPU for CO2, and 8 GPU for O2 with selectivities of around 100 for H2/N2, 50 for CO2/CH4, and 7 for O2/N2 were obtained. Copyright (C) 1999 Elsevier Science B.V.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/S0376-7388(98)00225-7
dc.sourceScopus
dc.subjectGas separation
dc.subjectHollow fiber
dc.subjectMultilayer composite membrane
dc.subjectPoly(4-vinylpyridine)
dc.subjectPorous substrate
dc.subjectPre-wetting
dc.typeArticle
dc.contributor.departmentCHEMICAL & ENVIRONMENTAL ENGINEERING
dc.contributor.departmentCHEMICAL & BIOMOLECULAR ENGINEERING
dc.description.doi10.1016/S0376-7388(98)00225-7
dc.description.sourcetitleJournal of Membrane Science
dc.description.volume152
dc.description.issue2
dc.description.page211-225
dc.description.codenJMESD
dc.identifier.isiut000077883500006
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.