Please use this identifier to cite or link to this item:
Title: Biotransformation kinetics of Pseudomonas putida for cometabolism of phenol and 4-chlorophenol in the presence of sodium glutamate
Authors: Wang, S.-J. 
Loh, K.-C. 
Keywords: 4-cp transformation
Phenol degradation
Ternary substrate system
Issue Date: 2001
Citation: Wang, S.-J., Loh, K.-C. (2001). Biotransformation kinetics of Pseudomonas putida for cometabolism of phenol and 4-chlorophenol in the presence of sodium glutamate. Biodegradation 12 (3) : 189-199. ScholarBank@NUS Repository.
Abstract: A kinetic model to describe the degradation of phenol and cometabolic transformation of 4-chlorophenol (4-cp) in the presence of sodium glutamate (SG) has been developed and validated experimentally. The integrated model accounts for cell growth, toxicity of 4-cp, cross-inhibitions among the three substrates, and the different roles of the specific growth substrate (phenol) and the conventional carbon source (SG) in the cometabolism of 4-cp. In this ternary substrate system, the overall phenol degradation and 4-cp transformation rates are greatly enhanced by the addition of SG since SG is able to attenuate the toxicity of 4-cp and therefore increase the cell growth rate. Model analysis indicates that the maximum specific degradation rate of phenol (0.819 mg (mg.h)-1) is lowered by SG by up to 46% whereas the specific transformation rate of 4-cp is not directly affected by the presence of SG. The competitive inhibition coefficient of 4-cp to phenol degradation (Ki,cp) and that of phenol to 4-cp transformation (Ki,ph) were determined to be 6.49 mg l-1 and 0.193 mg l-1, respectively, indicating that phenol imposes much larger competitive inhibition to 4-cp transformation than the converse. The model developed can simultaneously predict phenol degradation and 4-cp transformation, and is useful for dealing with cometabolism involving multiple substrates.
Source Title: Biodegradation
ISSN: 09239820
DOI: 10.1023/A:1013170322269
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Oct 4, 2022


checked on Oct 4, 2022

Page view(s)

checked on Oct 6, 2022

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.