Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.memsci.2010.05.056
DC FieldValue
dc.titleWell-constructed cellulose acetate membranes for forward osmosis: Minimized internal concentration polarization with an ultra-thin selective layer
dc.contributor.authorZhang, S.
dc.contributor.authorWang, K.Y.
dc.contributor.authorChung, T.-S.
dc.contributor.authorChen, H.
dc.contributor.authorJean, Y.C.
dc.contributor.authorAmy, G.
dc.date.accessioned2014-10-09T07:05:55Z
dc.date.available2014-10-09T07:05:55Z
dc.date.issued2010-09
dc.identifier.citationZhang, S., Wang, K.Y., Chung, T.-S., Chen, H., Jean, Y.C., Amy, G. (2010-09). Well-constructed cellulose acetate membranes for forward osmosis: Minimized internal concentration polarization with an ultra-thin selective layer. Journal of Membrane Science 360 (1-2) : 522-535. ScholarBank@NUS Repository. https://doi.org/10.1016/j.memsci.2010.05.056
dc.identifier.issn03767388
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/90494
dc.description.abstractThe design and engineering of membrane structure that produces low salt leakage and minimized internal concentration polarization (ICP) in forward osmosis (FO) processes have been explored in this work. The fundamentals of phase inversion of cellulose acetate (CA) regarding the formation of an ultra-thin selective layer at the bottom interface of polymer and casting substrate were investigated by using substrates with different hydrophilicity. An in-depth understanding of membrane structure and pore size distribution has been elucidated with field emission scanning electronic microscopy (FESEM) and positron annihilation spectroscopy (PAS). A double dense-layer structure is formed when glass plate is used as the casting substrate and water as the coagulant. The thickness of the ultra-thin bottom layer resulted from hydrophilic-hydrophilic interaction is identified to be around 95nm, while a fully porous, open-cell structure is formed in the middle support layer due to spinodal decomposition. Consequently, the membrane shows low salt leakage with mitigated ICP in the FO process for seawater desalination. The structural parameter (St) of the membrane is analyzed by modeling water flux using the theory that considers both external concentration polarization (ECP) and ICP, and the St value of the double dense-layer membrane is much smaller than those reported in literatures. Furthermore, the effects of an intermediate immersion into a solvent/water mixed bath prior to complete immersion in water on membrane formation have been studied. The resultant membranes may have a single dense layer with an even lower St value. A comparison of fouling behavior in a simple FO-membrane bioreactor (MBR) system is evaluated for these two types of membranes. The double dense-layer membrane shows a less fouling propensity. This study may help pave the way to improve the membrane design for new-generation FO membranes. © 2010 Elsevier B.V.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.memsci.2010.05.056
dc.sourceScopus
dc.subjectCellulose acetate
dc.subjectForward osmosis
dc.subjectMembranes
dc.subjectPhase inversion
dc.subjectPositron annihilation spectroscopy
dc.typeArticle
dc.contributor.departmentCHEMICAL & BIOMOLECULAR ENGINEERING
dc.description.doi10.1016/j.memsci.2010.05.056
dc.description.sourcetitleJournal of Membrane Science
dc.description.volume360
dc.description.issue1-2
dc.description.page522-535
dc.description.codenJMESD
dc.identifier.isiut000280311500060
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.