Please use this identifier to cite or link to this item: https://doi.org/10.1021/es300784h
Title: Polyelectrolyte-promoted Forward Osmosis-Membrane Distillation (FO-MD) hybrid process for dye wastewater treatment
Authors: Ge, Q. 
Wang, P.
Wan, C.
Chung, T.-S. 
Issue Date: 5-Jun-2012
Citation: Ge, Q., Wang, P., Wan, C., Chung, T.-S. (2012-06-05). Polyelectrolyte-promoted Forward Osmosis-Membrane Distillation (FO-MD) hybrid process for dye wastewater treatment. Environmental Science and Technology 46 (11) : 6236-6243. ScholarBank@NUS Repository. https://doi.org/10.1021/es300784h
Abstract: Polyelectrolytes have proven their advantages as draw solutes in forward osmosis process in terms of high water flux, minimum reverse flux, and ease of recovery. In this work, the concept of a polyelectrolyte-promoted forward osmosis-membrane distillation (FO-MD) hybrid system was demonstrated and applied to recycle the wastewater containing an acid dye. A poly(acrylic acid) sodium (PAA-Na) salt was used as the draw solute of the FO to dehydrate the wastewater, while the MD was employed to reconcentrate the PAA-Na draw solution. With the integration of these two processes, a continuous wastewater treatment process was established. To optimize the FO-MD hybrid process, the effects of PAA-Na concentration, experimental duration, and temperature were investigated. Almost a complete rejection of PAA-Na solute was observed by both FO and MD membranes. Under the conditions of 0.48 g mL-1 PAA-Na and 66 °C, the wastewater was most efficiently dehydrated yet with a stabilized PAA-Na concentration around 0.48 g mL-1. The practicality of PAA-Na-promoted FO-MD hybrid technology demonstrates not only its suitability in wastewater reclamation, but also its potential in other membrane-based separations, such as protein or pharmaceutical product enrichment. This study may provide the insights of exploring novel draw solutes and their applications in FO related processes. © 2012 American Chemical Society.
Source Title: Environmental Science and Technology
URI: http://scholarbank.nus.edu.sg/handle/10635/89836
ISSN: 0013936X
DOI: 10.1021/es300784h
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.