Please use this identifier to cite or link to this item: https://doi.org/10.1002/fuce.200700041
Title: Membrane design for direct ethanol fuel cells: A hybrid proton-conducting interpenetrating polymer network
Authors: Fu, R.-Q. 
Hong, L. 
Lee, J.-Y. 
Keywords: Direct ethanol fuel cell
Interpenetrating network
Poly(vinyl alcohol)
Proton-conducting membrane
Issue Date: Feb-2008
Citation: Fu, R.-Q., Hong, L., Lee, J.-Y. (2008-02). Membrane design for direct ethanol fuel cells: A hybrid proton-conducting interpenetrating polymer network. Fuel Cells 8 (1) : 52-61. ScholarBank@NUS Repository. https://doi.org/10.1002/fuce.200700041
Abstract: A series of hybrid proton-conducting membranes with an interpenetrating polymer network (IPN) structure was designed with the direct ethanol fuel cell (DEFC) application in mind. In these membranes, glutaraldehyde crosslinked poly(vinyl alcohol) (PVA) were interpenetrated with the copolymer of 2-acrylamido-2-methyl-propanesulphonic acid (AMPS) and 2-hydroxyethyl methacrylate (HEMA) crosslinked by poly(ethylene glycol) dimethacrylate (PEGDMA). Silica from the in situ sol-gel hydrolysis of tetraethyl orthosilicate (TEOS) was uniformly dispersed in the polymer matrix. The membranes fabricated as such had ion exchange capacities of 0.84-1.43 meq g-1 and proton conductivities of 0.02-0.11 S cm-1. The membranes exhibited significantly lower fuel permeabilities than that of Nafion. In a manner totally unlike Nafion, fuel permeabilities were lower at higher fuel concentrations, and were lower in ethanol than methanol solutions. These behaviours are all relatable to the unique swelling characteristics of PVA (no swelling in ethanol, partial swelling in methanol and extensive swelling in water) and to the fuel blocking and swelling suppression properties of silica particles. The membranes are promising for DEFC applications since a high concentration of fuel may be used to reduce fuel crossover and to improve the anode kinetics for a resultant increase in both the energy and power densities of the fuel cell. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA.
Source Title: Fuel Cells
URI: http://scholarbank.nus.edu.sg/handle/10635/89377
ISSN: 16156846
DOI: 10.1002/fuce.200700041
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.