Please use this identifier to cite or link to this item: https://doi.org/10.1021/ma201844y
DC FieldValue
dc.titleEffect of end groups and grafting on the CO2 separation performance of poly(ethylene glycol) based membranes
dc.contributor.authorXia, J.
dc.contributor.authorLiu, S.
dc.contributor.authorChung, T.-S.
dc.date.accessioned2014-10-09T06:46:22Z
dc.date.available2014-10-09T06:46:22Z
dc.date.issued2011-10-11
dc.identifier.citationXia, J., Liu, S., Chung, T.-S. (2011-10-11). Effect of end groups and grafting on the CO2 separation performance of poly(ethylene glycol) based membranes. Macromolecules 44 (19) : 7727-7736. ScholarBank@NUS Repository. https://doi.org/10.1021/ma201844y
dc.identifier.issn00249297
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/88792
dc.description.abstractRubbery membranes have attracted significant attention for the CO 2/light gas separation due to their relative high permeability and high solubility selectivity. This work reports universal strategies to tailor CO2 permeability and CO2/light gas permselectivity via blending or grafting of poly(ethylene glycol) (PEG) derivatives into or onto organic-inorganic membrane (OIM) substrates. A PEG derivative is blended into the substrate which contains inorganic siloxane networks and poly(ethylene oxide) segments followed by thermal grafting. Ultrahigh CO2 permeability (982 barrer at 45 °C) is achieved via physical blending, while extremely high CO2 permeability (1840 barrer at 45 °C) is obtained after chemical grafting. Neither of these two modification methods shows the loss of CO2/H2 and CO2/N2 selectivity compared to the substrate. Melting and crystallization behaviors of this PEG derivative are believed to significantly affect the overall gas permeation performance. All the features make these OIMs promising membrane materials for CO2 capture. © 2011 American Chemical Society.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1021/ma201844y
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentCHEMICAL & BIOMOLECULAR ENGINEERING
dc.description.doi10.1021/ma201844y
dc.description.sourcetitleMacromolecules
dc.description.volume44
dc.description.issue19
dc.description.page7727-7736
dc.description.codenMAMOB
dc.identifier.isiut000295487600028
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.