Please use this identifier to cite or link to this item: https://doi.org/10.1039/c3cp54911a
DC FieldValue
dc.titleDNA-assisted assembly of carbon nanotubes and MnO2 nanospheres as electrodes for high-performance asymmetric supercapacitors
dc.contributor.authorGuo, C.X.
dc.contributor.authorChitre, A.A.
dc.contributor.authorLu, X.
dc.date.accessioned2014-10-09T06:46:08Z
dc.date.available2014-10-09T06:46:08Z
dc.date.issued2014-03-14
dc.identifier.citationGuo, C.X., Chitre, A.A., Lu, X. (2014-03-14). DNA-assisted assembly of carbon nanotubes and MnO2 nanospheres as electrodes for high-performance asymmetric supercapacitors. Physical Chemistry Chemical Physics 16 (10) : 4672-4678. ScholarBank@NUS Repository. https://doi.org/10.1039/c3cp54911a
dc.identifier.issn14639076
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/88771
dc.description.abstractA DNA-assisted assembly approach is developed to fabricate a capacitor-type electrode material, DNA-functionalized carbon nanotubes (CNTs@DNA), and a battery-type electrode material, DNA@CNTs-bridged MnO2 spheres (CNTs@DNA-MnO2), for asymmetric supercapacitors. An energy density of 11.6 W h kg-1 is achieved at a power density of 185.5 W kg -1 with a high MnO2 mass loading of 4.2 mg cm -2. It is found that DNA assembly plays a critical role in the enhanced supercapacitor performance. This is because while DNA molecules functionalize carbon nanotubes (CNTs) via π-π stacking, their hydrophilic sugar-phosphate backbones also promote the dispersion of CNTs. The resultant CNTs@DNA chains can link multiple MnO2 spheres to form a networked architecture that facilitates charge transfer and effective MnO2 utilization. The improved performance of the asymmetric supercapacitors indicates that DNA-assisted assembly offers a promising approach to the fabrication of high-performance energy storage devices. © 2014 the Owner Societies.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1039/c3cp54911a
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentCHEMICAL & BIOMOLECULAR ENGINEERING
dc.description.doi10.1039/c3cp54911a
dc.description.sourcetitlePhysical Chemistry Chemical Physics
dc.description.volume16
dc.description.issue10
dc.description.page4672-4678
dc.description.codenPPCPF
dc.identifier.isiut000332393200027
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.