Please use this identifier to cite or link to this item: https://doi.org/10.1021/ie2005884
DC FieldValue
dc.titleCO2 separation from flue gas using polyvinyl-(room temperature ionic liquid)-room temperature ionic liquid composite membranes
dc.contributor.authorLi, P.
dc.contributor.authorPramoda, K.P.
dc.contributor.authorChung, T.-S.
dc.date.accessioned2014-10-09T06:44:52Z
dc.date.available2014-10-09T06:44:52Z
dc.date.issued2011-08-03
dc.identifier.citationLi, P., Pramoda, K.P., Chung, T.-S. (2011-08-03). CO2 separation from flue gas using polyvinyl-(room temperature ionic liquid)-room temperature ionic liquid composite membranes. Industrial and Engineering Chemistry Research 50 (15) : 9344-9353. ScholarBank@NUS Repository. https://doi.org/10.1021/ie2005884
dc.identifier.issn08885885
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/88660
dc.description.abstractIn this work, a vinyl-functionalized room temperature ionic liquid (RTIL), 1-vinyl-3-butylimidazolium bis(trifluoromethylsulfonyl)imide ([vbim][Tf 2N]), has been successfully synthesized. The RTIL was further polymerized and mixed with 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([bmim][Tf2N]) to form the free-standing poly([vbim][Tf2N])-[bmim][Tf2N] composite films. The compositions of [bmim][Tf2N] in the composite membranes were designed at 15, 30, 45, and 60 wt %. The pristine poly([vbim][Tf 2N]) and poly([vbim][Tf2N])-[bmim][Tf2N] composite membranes exhibit similar permeability selectivities as the standard [bmim][Tf2N] but permeabilities are enhanced up to 5 times higher than the equivalent polystyrene-RTIL and polyacrylate-RTIL membranes. An increase in [bmim][Tf2N] concentration of poly([vbim][Tf 2N])-[bmim][Tf2N] composite membranes results in an increase in solubility, diffusivity, and permeability coefficients of CO 2 and N2 but does not change the CO2/N 2 selectivities of the solubility, diffusivity, and permeability. The CO2 permeability of the 60 wt % composite at 35 °C, 10 atm is 559 barrers in pure gas tests which is closer to 60% of the [bmim][Tf 2N] permeability (i.e., 1344 barrers). In addition, the 60 wt % composite membrane exhibits a CO2 permeability of 491.2 barrers and a CO2/N2 selectivity of 20 in mixed gas tests using CO 2/N2 (50:50) as the feed. © 2011 American Chemical Society.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1021/ie2005884
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentCHEMICAL & BIOMOLECULAR ENGINEERING
dc.description.doi10.1021/ie2005884
dc.description.sourcetitleIndustrial and Engineering Chemistry Research
dc.description.volume50
dc.description.issue15
dc.description.page9344-9353
dc.description.codenIECRE
dc.identifier.isiut000293196700055
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.