Please use this identifier to cite or link to this item:
Title: Advanced FO membranes from newly synthesized CAP polymer for wastewater reclamation through an integrated FO-MD hybrid system
Authors: Su, J. 
Ong, R.C. 
Wang, P.
Chung, T.-S. 
Helmer, B.J.
De Wit, J.S.
Keywords: Cellulose acetate propionate (CAP)
Dual-layer hollow fiber
FO-MD hybrid system
Forward osmosis
Wastewater reclamation
Issue Date: Mar-2013
Citation: Su, J., Ong, R.C., Wang, P., Chung, T.-S., Helmer, B.J., De Wit, J.S. (2013-03). Advanced FO membranes from newly synthesized CAP polymer for wastewater reclamation through an integrated FO-MD hybrid system. AIChE Journal 59 (4) : 1245-1254. ScholarBank@NUS Repository.
Abstract: A new cellulose acetate propionate (CAP) polymer has been synthesized and used to prepare high-performance forward osmosis (FO) membranes. With an almost equal degree of substitution of acetyl and propionyl groups, the CAP-based dense membranes show more balanced physicochemical properties than conventional cellulose acetate (CA)-based membranes for FO applications. The former have a lower equilibrium water content (6.6 wt. %), a lower salt diffusivity (1.6×1014 m2 s-1) and a much lower salt partition coefficient (0.013) compared with the latter. The as-prepared and annealed CAP-based hollow fibers have a rough surface with an average pore radius of 0.31 nm and a molecular weight cut off of 226 Da. At a transmembrane pressure of 1 bar, the dual-layer CAP-CA hollow fibers show a pure water permeability of 0.80 L m-2 h-1 bar-1 (LMH/bar) and a rejection of 75.5% to NaCl. The CAP-CA hollow fibers were first tested for their FO performance using 2.0 M NaCl draw solution and deionized water feed. An impressive water flux of 17.5 L m-2 h-1 (LMH) and a reverse salt flux of 2.5 g m-2 h-1 (gMH) were achieved with the draw solution running against the active CAP layer in the FO tests. The very low reverse salt flux is mainly resulting from the low salt diffusivity and salt partition coefficient of the CAP material. In a hybrid system combining FO and membrane distillation for wastewater reclamation, the newly developed hollow fibers show very encouraging results, that is, water production rate being 13-13.7 LMH, with a MgCl2 draw solution of only 0.5 M and an operating temperature of 343 K due to the incorporation of bulky propionyl groups with balanced physiochemical properties. © 2012 American Institute of Chemical Engineers (AIChE).
Source Title: AIChE Journal
ISSN: 00011541
DOI: 10.1002/aic.13898
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Nov 11, 2019


checked on Nov 11, 2019

Page view(s)

checked on Oct 26, 2019

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.