Please use this identifier to cite or link to this item: https://doi.org/10.1007/s11263-008-0141-9
DC FieldValue
dc.titleLarge deformation diffeomorphic metric curve mapping
dc.contributor.authorGlaunès, J.
dc.contributor.authorQiu, A.
dc.contributor.authorMiller, M.I.
dc.contributor.authorYounes, L.
dc.date.accessioned2014-10-08T09:45:03Z
dc.date.available2014-10-08T09:45:03Z
dc.date.issued2008-12
dc.identifier.citationGlaunès, J., Qiu, A., Miller, M.I., Younes, L. (2008-12). Large deformation diffeomorphic metric curve mapping. International Journal of Computer Vision 80 (3) : 317-336. ScholarBank@NUS Repository. https://doi.org/10.1007/s11263-008-0141-9
dc.identifier.issn09205691
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/87888
dc.description.abstractWe present a matching criterion for curves and integrate it into the large deformation diffeomorphic metric mapping (LDDMM) scheme for computing an optimal transformation between two curves embedded in Euclidean space ℝd . Curves are first represented as vector-valued measures, which incorporate both location and the first order geometric structure of the curves. Then, a Hilbert space structure is imposed on the measures to build the norm for quantifying the closeness between two curves. We describe a discretized version of this, in which discrete sequences of points along the curve are represented by vector-valued functionals. This gives a convenient and practical way to define a matching functional for curves. We derive and implement the curve matching in the large deformation framework and demonstrate mapping results of curves in ℝ2 and ℝ3. Behaviors of the curve mapping are discussed using 2D curves. The applications to shape classification is shown and experiments with 3D curves extracted from brain cortical surfaces are presented. © 2008 Springer Science+Business Media, LLC.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/s11263-008-0141-9
dc.sourceScopus
dc.subjectCurve matching
dc.subjectDiffeomorphisms
dc.subjectLarge deformation
dc.subjectVector-valued measure
dc.typeArticle
dc.contributor.departmentBIOENGINEERING
dc.description.doi10.1007/s11263-008-0141-9
dc.description.sourcetitleInternational Journal of Computer Vision
dc.description.volume80
dc.description.issue3
dc.description.page317-336
dc.description.codenIJCVE
dc.identifier.isiut000259370500003
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.