Please use this identifier to cite or link to this item: https://doi.org/10.1109/TMAG.2013.2272794
DC FieldValue
dc.titleSynthesis, characterization and hard ferromagnetism in FePt/ZnO nanocomposites with ultra-small size
dc.contributor.authorZhou, T.J.
dc.contributor.authorLu, M.
dc.contributor.authorShen, L.
dc.contributor.authorWee, R.Q.
dc.contributor.authorGong, H.
dc.contributor.authorCher, K.M.
dc.contributor.authorKo, H.Y.Y.
dc.contributor.authorYuan, Z.
dc.contributor.authorLiu, B.
dc.contributor.authorFeng, Y.P.
dc.date.accessioned2014-10-07T09:54:38Z
dc.date.available2014-10-07T09:54:38Z
dc.date.issued2014-01
dc.identifier.citationZhou, T.J., Lu, M., Shen, L., Wee, R.Q., Gong, H., Cher, K.M., Ko, H.Y.Y., Yuan, Z., Liu, B., Feng, Y.P. (2014-01). Synthesis, characterization and hard ferromagnetism in FePt/ZnO nanocomposites with ultra-small size. IEEE Transactions on Magnetics 50 (1) : -. ScholarBank@NUS Repository. https://doi.org/10.1109/TMAG.2013.2272794
dc.identifier.issn00189464
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/86772
dc.description.abstractMulti-component hybrid nanostructures containing two nanoscaled components of FePt and ZnO were successfully fabricated through seed mediated growth. The preformed FePt nanoparticles, which were fabricated either by the reduction of Pt(acac)2 and the decomposition of Fe(CO)5 or by simultaneous chemical reduction of Pt(acac)2 and Fe(acac)3 by 1,2-hexadecanediol at high temperature, work as the hetero-nucleation seeds for the preparation of hybrid nanostructures. The end products can be either FePt@ZnO core/shell nanoparticle assembly or FePt/ZnO nanocomposites, depending on the seeding particle size. If the seeding particle size is larger than 3.5 nm, core/shell nanoparticle assembly was formed, while if the seeding particle is smaller than 2 nm, FePt/ZnO nanocomposites were formed. For the FePt@ZnO core/shell, HRTEM showed a quasi-epitaxial growth between the FePt core and the ZnO shell. The ZnO shell was highly deformed. The core/shell nanoparticle assembly exhibits both semiconducting and magnetic properties which is superparamagnetic at room temperature. For the nanocomposites, the as-synthesized ultra-small 1.9 nm FePt3 nanoparticles are superparamagnetic. After embedding into the ZnO matrix, those superparamagnetic nanoparticles become magnetically hard with coercivity field of 650 Oe at room temperature. First-principles calculations indicate a giant interfacial anisotropic energy, induced by the strong spin-orbit interaction between Pt and O at interface, leading to room-temperature permanent ferromagnetism. The findings shed light on research for new material designs with giant interfacial anisotropy for various applications. © 2013 IEEE.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1109/TMAG.2013.2272794
dc.sourceScopus
dc.subjectCore/shell nanoparticles
dc.subjectmagnetic
dc.subjectnanocomposites
dc.subjectsemiconducting
dc.typeArticle
dc.contributor.departmentBIOENGINEERING
dc.contributor.departmentPHYSICS
dc.contributor.departmentMATERIALS SCIENCE AND ENGINEERING
dc.description.doi10.1109/TMAG.2013.2272794
dc.description.sourcetitleIEEE Transactions on Magnetics
dc.description.volume50
dc.description.issue1
dc.description.page-
dc.description.codenIEMGA
dc.identifier.isiut000330026800066
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.