Please use this identifier to cite or link to this item: https://doi.org/10.1063/1.3156689
DC FieldValue
dc.titleEffects and thermal stability of hydrogen microwave plasma treatment on tetrahedral amorphous carbon films by in situ ultraviolet photoelectron spectroscopy
dc.contributor.authorChua, D.H.C.
dc.contributor.authorHsieh, J.
dc.contributor.authorGao, X.
dc.contributor.authorQi, D.
dc.contributor.authorChen, S.
dc.contributor.authorVarghese, B.
dc.contributor.authorSow, C.H.
dc.contributor.authorWee, A.T.S.
dc.contributor.authorLu, J.
dc.contributor.authorLoh, K.P.
dc.contributor.authorYu, X.
dc.contributor.authorMoser, H.O.
dc.date.accessioned2014-10-07T09:48:48Z
dc.date.available2014-10-07T09:48:48Z
dc.date.issued2009
dc.identifier.citationChua, D.H.C., Hsieh, J., Gao, X., Qi, D., Chen, S., Varghese, B., Sow, C.H., Wee, A.T.S., Lu, J., Loh, K.P., Yu, X., Moser, H.O. (2009). Effects and thermal stability of hydrogen microwave plasma treatment on tetrahedral amorphous carbon films by in situ ultraviolet photoelectron spectroscopy. Journal of Applied Physics 106 (2) : -. ScholarBank@NUS Repository. https://doi.org/10.1063/1.3156689
dc.identifier.issn00218979
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/86276
dc.description.abstractThis paper reports a comprehensive experimental study on the effects of hydrogen microwave plasma treatment on nonhydrogenated high s p3 content tetrahedral amorphous carbon (ta-C) film. In this study, a surface C-H dipole layer was first observed by high resolution electron energy loss spectroscopy, showing the presence of C-H bonding states. This resulted in the enhancement of electron field emission of the plasma treated films by largely lowering the turn-on field. Thermal stability tests using in situ ultraviolet photoelectron spectroscopy confirm that the C-H dipole layer not only reduces the work function of the films, it is extremely stable in both ambient and vacuum conditions and can sustain up to 600 °C annealing in vacuum. Atomic force microscopy studies also show minimal modifications to the surface morphology, leading to the conclusion that the C-H dipole layer is responsible for lowering the work function. This has improved the electron emission properties which can lead to potential applications such as electron emission displays. © 2009 American Institute of Physics.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1063/1.3156689
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentPHYSICS
dc.contributor.departmentSINGAPORE SYNCHROTRON LIGHT SOURCE
dc.contributor.departmentCHEMISTRY
dc.contributor.departmentNUS NANOSCIENCE & NANOTECH INITIATIVE
dc.contributor.departmentMATERIALS SCIENCE AND ENGINEERING
dc.description.doi10.1063/1.3156689
dc.description.sourcetitleJournal of Applied Physics
dc.description.volume106
dc.description.issue2
dc.description.page-
dc.description.codenJAPIA
dc.identifier.isiut000268613000154
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.