Please use this identifier to cite or link to this item: https://doi.org/10.1109/TPAMI.2011.177
DC FieldValue
dc.titleSparse algorithms are not stable: A no-free-lunch theorem
dc.contributor.authorXu, H.
dc.contributor.authorCaramanis, C.
dc.contributor.authorMannor, S.
dc.date.accessioned2014-10-07T09:10:33Z
dc.date.available2014-10-07T09:10:33Z
dc.date.issued2012
dc.identifier.citationXu, H., Caramanis, C., Mannor, S. (2012). Sparse algorithms are not stable: A no-free-lunch theorem. IEEE Transactions on Pattern Analysis and Machine Intelligence 34 (1) : 187-193. ScholarBank@NUS Repository. https://doi.org/10.1109/TPAMI.2011.177
dc.identifier.issn01628828
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/85653
dc.description.abstractWe consider two desired properties of learning algorithms: sparsity and algorithmic stability. Both properties are believed to lead to good generalization ability. We show that these two properties are fundamentally at odds with each other: A sparse algorithm cannot be stable and vice versa. Thus, one has to trade off sparsity and stability in designing a learning algorithm. In particular, our general result implies that l1-regularized regression (Lasso) cannot be stable, while l2-regularized regression is known to have strong stability properties and is therefore not sparse. © 2012 IEEE.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1109/TPAMI.2011.177
dc.sourceScopus
dc.subjectLasso
dc.subjectregularization
dc.subjectsparsity
dc.subjectStability
dc.typeArticle
dc.contributor.departmentMECHANICAL ENGINEERING
dc.description.doi10.1109/TPAMI.2011.177
dc.description.sourcetitleIEEE Transactions on Pattern Analysis and Machine Intelligence
dc.description.volume34
dc.description.issue1
dc.description.page187-193
dc.description.codenITPID
dc.identifier.isiut000297069900013
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.