Please use this identifier to cite or link to this item: https://doi.org/10.1089/ten.tec.2008.0255
Title: Manufacture of plga multiple-channel conduits with precise hierarchical pore architectures and in vitro/vivo evaluation for spinal cord injury
Authors: He, L. 
Zhang, Y.
Zeng, C.
Ngiam, M.
Liao, S. 
Quan, D.
Zeng, Y.
Lu, J.
Ramakrishna, S. 
Issue Date: 1-Jun-2009
Citation: He, L., Zhang, Y., Zeng, C., Ngiam, M., Liao, S., Quan, D., Zeng, Y., Lu, J., Ramakrishna, S. (2009-06-01). Manufacture of plga multiple-channel conduits with precise hierarchical pore architectures and in vitro/vivo evaluation for spinal cord injury. Tissue Engineering - Part C: Methods 15 (2) : 243-255. ScholarBank@NUS Repository. https://doi.org/10.1089/ten.tec.2008.0255
Abstract: By the method of injection molding combined with thermally induced phase separation (TIPS), a novel nerve conduit with a plurality of channels and macro-/microporous architecture was fabricated using poly (lactideco-glycolide) (PLGA, 75:25; Mn=1.22×105). The diameter of the conduits and the number of channels could be regulated by changing the parameters of the mold, and the porosity of the conduit was as high as 95.4%. Meanwhile, the hierarchical pore architecture of the walls could be controlled through varying the solution concentration and the contents of porogen. The degradation study in vitro showed that 7-channel conduit could hold its apparent geometry for about 12 weeks in phosphate buffer solution (PBS) at 37°C, and the pH values of the degradation solution were detected in the range 4.1-4.5. The influences of the conduit architecture on the cell attachment, spreading, and proliferation were evaluated by culturing rat mesenchymal stem cells alone or together with Schwann cells in vitro. The implantation of the PLGA conduit in the spinal cord showed that it had good biocompatibility, and no obvious inflammatory response was detected. Therefore, the results implied that these PLGA multiple-channel nerve conduits have the potential use for spinal cord injury. © 2009 Mary Ann Liebert, Inc.
Source Title: Tissue Engineering - Part C: Methods
URI: http://scholarbank.nus.edu.sg/handle/10635/85374
ISSN: 19373384
DOI: 10.1089/ten.tec.2008.0255
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.