Please use this identifier to cite or link to this item: https://doi.org/10.1021/am404939q
Title: Maghemite nanoparticles on electrospun CNFs template as prospective lithium-ion battery anode
Authors: Wu, Y.
Zhu, P.
Reddy, M.V. 
Chowdari, B.V.R. 
Ramakrishna, S. 
Keywords: anode material
electrospun CNF
lithium-ion battery
maghemite nanoparticles
Issue Date: 12-Feb-2014
Citation: Wu, Y., Zhu, P., Reddy, M.V., Chowdari, B.V.R., Ramakrishna, S. (2014-02-12). Maghemite nanoparticles on electrospun CNFs template as prospective lithium-ion battery anode. ACS Applied Materials and Interfaces 6 (3) : 1951-1958. ScholarBank@NUS Repository. https://doi.org/10.1021/am404939q
Abstract: In this work, maghemite (γ-Fe2O3) nanoparticles were uniformly coated on carbon nanofibers (CNFs) by a hybrid synthesis procedure combining an electrospinning technique and hydrothermal method. Polyacrylonitrile nanofibers fabricated by the electrospinning technique serve as a robust support for iron oxide precursors during the hydrothermal process and successfully limit the aggregation of nanoparticles at the following carbonization step. The best materials were optimized under a carbonization condition of 600 C for 12 h. X-ray diffraction and electron microscopy studies confirm the formation of a maghemite structure standing on the surface of CNFs. The average size of γ-Fe2O3 nanoparticles is below 100 nm, whereas CNFs are ∼150 nm in diameter. In comparison with aggregated bare iron oxide nanoparticles, the as-prepared carbon-maghemite nanofibers exhibit a higher surface area and greatly improved electrochemical performance (>830 mAh g-1 at 50 mA g-1 for 40 cycles and high rate capacity up to 5 A g-1 in the voltage range of 0.005-3 V vs Li). The greatly enhanced electrochemical performance is attributed to the unique one-dimensional nanostructure and the limited aggregation of nanoparticles. © 2014 American Chemical Society.
Source Title: ACS Applied Materials and Interfaces
URI: http://scholarbank.nus.edu.sg/handle/10635/85370
ISSN: 19448244
DOI: 10.1021/am404939q
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.