Please use this identifier to cite or link to this item:
Title: Localized lubrication of micromachines: A feasibility study on Si in reciprocating sliding with PFPE as the lubricant
Authors: Jonathan, L.Y. 
Harikumar, V.
Satyanarayana, N. 
Sinha, S.K. 
Keywords: Boundary lubrication
Lubricated wear
Sliding wear
Wear testing
Issue Date: 2-Dec-2010
Citation: Jonathan, L.Y., Harikumar, V., Satyanarayana, N., Sinha, S.K. (2010-12-02). Localized lubrication of micromachines: A feasibility study on Si in reciprocating sliding with PFPE as the lubricant. Wear 270 (1-2) : 19-31. ScholarBank@NUS Repository.
Abstract: The lubrication of Micro-Electro-Mechanical Systems (MEMS) has been a major obstacle to the micromachine industry, limiting the designs commercially available and actuating/sensing mechanisms in micro actuators/sensors to mostly non-contacting ones. MEMS are traditionally made of silicon (Si), which has very poor tribological properties. Lubrication techniques for MEMS usually involve highly expensive processes such as vapour deposition and complex hermetic packaging to ensure longer wear life. The present study proposes a novel method of locally delivering a required amount of lubricant onto a specific location on a MEMS device, extending its wear life by several orders of magnitudes. To study the feasibility of this process, a fixed amount of PFPE was delivered to a contact between two flat Si pieces which were then subjected to reciprocation sliding at an applied normal load of 0.5N and a sliding velocity of 5mms-1. Tribological properties such as coefficient of friction and wear behaviour were studied to ascertain the effectiveness of this lubrication method. The results have revealed that the current localized lubrication method is very effective in reducing the coefficient of friction and increasing wear life. © 2010 Elsevier B.V.
Source Title: Wear
ISSN: 00431648
DOI: 10.1016/j.wear.2010.08.027
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Aug 18, 2019


checked on Jul 10, 2019

Page view(s)

checked on Aug 17, 2019

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.