Please use this identifier to cite or link to this item:
Title: A comparative evaluation of passive and active samplers for measurements of gaseous semi-volatile organic compounds in the tropical atmosphere
Authors: He, J. 
Balasubramanian, R. 
Keywords: Air-side mass transfer coefficient
Passive sampling
PUF disk
Issue Date: Mar-2010
Citation: He, J., Balasubramanian, R. (2010-03). A comparative evaluation of passive and active samplers for measurements of gaseous semi-volatile organic compounds in the tropical atmosphere. Atmospheric Environment 44 (7) : 884-891. ScholarBank@NUS Repository.
Abstract: The polyurethane foam (PUF) disk-based passive air samplers (PAS), mounted inside two aluminium bowls to buffer the air flow to the disk and to shield it from precipitation and sunlight, were used for the collection of atmospheric SVOCs in Singapore during April 2008-June 2008. Data obtained from PAS measurements are compared to those from active high-volume air sampling (AAS). Single factor ANOVA tests show that there were no significant differences in chemical distribution profiles between actively and passively collected samples (PAHs, F = 3.38 × 10-8  0.05; OCPs, F = 2.71 × 10-8  0.05). The average air-side mass transfer coefficient (kA) for PAS, determined from the loss of depuration compounds such as 13C6 - HCB (1000 ng), 13C12 - 4,4′ DDT (1000 ng) and 13C12 - PCB 101 (1000 ng)spiked on the disks prior to deployment, was 0.12 ± 0.04 m s-1. These values are comparable to those reported previously in the literature. The average sampling rate was 3.78 ± 1.83 m3 d-1 for the 365 cm2 PUF disk. Throughout the entire sampling period (∼68 d), most of the PAHs and all OCPs exhibited a linear uptake trend on PAS, while naphthalene, acenaphthylene, acenaphthene and fluorene reached the curvilinear phase after the first ∼30 d exposure. Theoretically estimated times to equilibrium (teq) ranged from around one month for Acy to hundreds of years for DB(ah)A. Sampling rates, based on the time integrated active sampling-derived concentrations and masses collected by PUF disks during the linear uptake phase, were determined for all target compounds with the average values of 2.50 m3 d-1 and 3.43 m3 d-1 for PAHs and OCPs, respectively. More variations were observed as compared to those from the depuration study. These variation were most likely due to the difference of physicochemical properties of individual species. Lastly, multiple linear regression models were developed to estimate the log-transformed gaseous concentration of an individual compound in air based on the mass collection rate of the gaseous SVOCs measured using the PAS and the molecular weight (MW) of the particular compound for both PAHs and OCPs, respectively. © 2009 Elsevier Ltd. All rights reserved.
Source Title: Atmospheric Environment
ISSN: 13522310
DOI: 10.1016/j.atmosenv.2009.12.009
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on May 17, 2022


checked on May 17, 2022

Page view(s)

checked on May 12, 2022

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.