Please use this identifier to cite or link to this item:
https://doi.org/10.1186/1556-276X-7-114
DC Field | Value | |
---|---|---|
dc.title | Quantum transport simulations of graphene nanoribbon devices using dirac equation calibrated with tight-binding π-bond model | |
dc.contributor.author | Chin, S.-K. | |
dc.contributor.author | Lam, K.-T. | |
dc.contributor.author | Seah, D. | |
dc.contributor.author | Liang, G. | |
dc.date.accessioned | 2014-10-07T04:35:28Z | |
dc.date.available | 2014-10-07T04:35:28Z | |
dc.date.issued | 2012 | |
dc.identifier.citation | Chin, S.-K., Lam, K.-T., Seah, D., Liang, G. (2012). Quantum transport simulations of graphene nanoribbon devices using dirac equation calibrated with tight-binding π-bond model. Nanoscale Research Letters 7 : -. ScholarBank@NUS Repository. https://doi.org/10.1186/1556-276X-7-114 | |
dc.identifier.issn | 19317573 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/82953 | |
dc.description.abstract | We present an efficient approach to study the carrier transport in graphene nanoribbon (GNR) devices using the non-equilibrium Green's function approach (NEGF) based on the Dirac equation calibrated to the tight-binding π-bond model for graphene. The approach has the advantage of the computational efficiency of the Dirac equation and still captures sufficient quantitative details of the bandstructure from the tight-binding π-bond model for graphene. We demonstrate how the exact self-energies due to the leads can be calculated in the NEGF-Dirac model. We apply our approach to GNR systems of different widths subjecting to different potential profiles to characterize their device physics. Specifically, the validity and accuracy of our approach will be demonstrated by benchmarking the density of states and transmissions characteristics with that of the more expensive transport calculations for the tight-binding π-bond model. © 2012 Chin et al. | |
dc.description.uri | http://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1186/1556-276X-7-114 | |
dc.source | Scopus | |
dc.subject | Dirac equation | |
dc.subject | Graphene nanoribbons | |
dc.subject | Non-equilibrium green's function | |
dc.subject | Quantum transport | |
dc.type | Article | |
dc.contributor.department | ELECTRICAL & COMPUTER ENGINEERING | |
dc.description.doi | 10.1186/1556-276X-7-114 | |
dc.description.sourcetitle | Nanoscale Research Letters | |
dc.description.volume | 7 | |
dc.description.page | - | |
dc.identifier.isiut | 000305237500001 | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
SCOPUSTM
Citations
13
checked on May 17, 2022
WEB OF SCIENCETM
Citations
13
checked on May 10, 2022
Page view(s)
91
checked on May 12, 2022
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.