Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.neucom.2009.12.032
DC FieldValue
dc.titlePrincipal component analysis based on non-parametric maximum entropy
dc.contributor.authorHe, R.
dc.contributor.authorHu, B.
dc.contributor.authorYuan, X.
dc.contributor.authorZheng, W.-S.
dc.date.accessioned2014-10-07T04:35:11Z
dc.date.available2014-10-07T04:35:11Z
dc.date.issued2010-06
dc.identifier.citationHe, R., Hu, B., Yuan, X., Zheng, W.-S. (2010-06). Principal component analysis based on non-parametric maximum entropy. Neurocomputing 73 (10-12) : 1840-1852. ScholarBank@NUS Repository. https://doi.org/10.1016/j.neucom.2009.12.032
dc.identifier.issn09252312
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/82929
dc.description.abstractIn this paper, we propose an improved principal component analysis based on maximum entropy (MaxEnt) preservation, called MaxEnt-PCA, which is derived from a Parzen window estimation of Renyi's quadratic entropy. Instead of minimizing the reconstruction error either based on L2-norm or L1-norm, the MaxEnt-PCA attempts to preserve as much as possible the uncertainty information of the data measured by entropy. The optimal solution of MaxEnt-PCA consists of the eigenvectors of a Laplacian probability matrix corresponding to the MaxEnt distribution. MaxEnt-PCA (1) is rotation invariant, (2) is free from any distribution assumption, and (3) is robust to outliers. Extensive experiments on real-world datasets demonstrate the effectiveness of the proposed linear method as compared to other related robust PCA methods. © 2010 Elsevier B.V.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.neucom.2009.12.032
dc.sourceScopus
dc.subjectEntropy
dc.subjectInformation theoretic learning
dc.subjectPCA
dc.subjectSubspace learning
dc.typeArticle
dc.contributor.departmentELECTRICAL & COMPUTER ENGINEERING
dc.description.doi10.1016/j.neucom.2009.12.032
dc.description.sourcetitleNeurocomputing
dc.description.volume73
dc.description.issue10-12
dc.description.page1840-1852
dc.description.codenNRCGE
dc.identifier.isiut000279134100034
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.