Please use this identifier to cite or link to this item: https://doi.org/10.1109/TIT.2003.821966
DC FieldValue
dc.titleMultisequence shift register synthesis over commutative rings with identity with applications to decoding cyclic codes over integer residue rings
dc.contributor.authorArmand, M.A.
dc.date.accessioned2014-10-07T04:32:53Z
dc.date.available2014-10-07T04:32:53Z
dc.date.issued2004-01
dc.identifier.citationArmand, M.A. (2004-01). Multisequence shift register synthesis over commutative rings with identity with applications to decoding cyclic codes over integer residue rings. IEEE Transactions on Information Theory 50 (1) : 220-229. ScholarBank@NUS Repository. https://doi.org/10.1109/TIT.2003.821966
dc.identifier.issn00189448
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/82736
dc.description.abstractWe present a new algorithm for solving the multisequence shift register synthesis problem over a commutative ring R with identity. Given a finite set of R-sequences, each of length L, the complexity of our algorithm in terms of R-multiplications is O(L2) as L → ∞. An important application of this algorithm is in the decoding of cyclic codes over ℤq up to the Hartmann-Tzeng bound, where q is a prime power. Characterization of the set of monic characteristic polynomials of a prescribed set of multiple syndrome sequences leads to an efficient decoding procedure, which we further extend to decode cyclic codes over ℤm where m is a product of prime powers.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1109/TIT.2003.821966
dc.sourceScopus
dc.subjectCyclic codes
dc.subjectDecoding
dc.subjectGalois rings
dc.subjectMinimal polynomials
dc.subjectSequences
dc.typeArticle
dc.contributor.departmentELECTRICAL & COMPUTER ENGINEERING
dc.description.doi10.1109/TIT.2003.821966
dc.description.sourcetitleIEEE Transactions on Information Theory
dc.description.volume50
dc.description.issue1
dc.description.page220-229
dc.description.codenIETTA
dc.identifier.isiut000188371800020
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

7
checked on Mar 31, 2023

WEB OF SCIENCETM
Citations

6
checked on Mar 23, 2023

Page view(s)

198
checked on Mar 30, 2023

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.