Please use this identifier to cite or link to this item: https://doi.org/10.1109/TIT.2004.840901
DC FieldValue
dc.titleImproved list decoding of generalized Reed-Solomon and alternant codes over Galois rings
dc.contributor.authorArmand, M.A.
dc.date.accessioned2014-10-07T04:30:11Z
dc.date.available2014-10-07T04:30:11Z
dc.date.issued2005-02
dc.identifier.citationArmand, M.A. (2005-02). Improved list decoding of generalized Reed-Solomon and alternant codes over Galois rings. IEEE Transactions on Information Theory 51 (2) : 728-733. ScholarBank@NUS Repository. https://doi.org/10.1109/TIT.2004.840901
dc.identifier.issn00189448
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/82506
dc.description.abstractWe present a two-stage list decoder comprising an errors-only Guruswami-Sudan (GS) decoder and an errors-and-erasures GS decoder as component decoders in the first and second stage, respectively. The two stages are coupled via a post-processor which selects a codeword from the output list of the first component decoder, from which erasure locations are obtained for the second stage. When applied to a generalized Reed-Solomon (RS) code over a Galois ring R that maps into a generalized RS code of the same length n and minimum (Hamming) distance d over the corresponding residue field, the proposed decoder exploits the presence of zero divisors in R to correct s errors where w = ⌈ n - √n(n - d) - 1 ⌉ < s ≤ ⌈ n - √/(n - w)(n - d) - 1 ⌉ with a probability determined by s, w, and the ratio of the number of non-trivial zero divisors to the number of units in the code alphabet. Focusing primarily on alternant codes over ℤ2l, animportant class of subring subcodes of generalized RS codes over GR (2l, a), we demonstrate that the GS decoding radius w can be exceeded by a substantial margin with significant probability. © 2005 IEEE.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1109/TIT.2004.840901
dc.sourceScopus
dc.subjectAlternant codes
dc.subjectGalois rings
dc.subjectGeneralized Reed-Solomon (RS) codes
dc.subjectList decoding
dc.subjectZero divisors
dc.typeArticle
dc.contributor.departmentELECTRICAL & COMPUTER ENGINEERING
dc.description.doi10.1109/TIT.2004.840901
dc.description.sourcetitleIEEE Transactions on Information Theory
dc.description.volume51
dc.description.issue2
dc.description.page728-733
dc.description.codenIETTA
dc.identifier.isiut000226757500025
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

5
checked on Mar 26, 2020

WEB OF SCIENCETM
Citations

4
checked on Mar 19, 2020

Page view(s)

63
checked on Mar 20, 2020

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.