Please use this identifier to cite or link to this item: https://doi.org/10.1088/0022-3727/46/38/385102
DC FieldValue
dc.titleExcellent c-Si surface passivation by thermal atomic layer deposited aluminum oxide after industrial firing activation
dc.contributor.authorLiao, B.
dc.contributor.authorStangl, R.
dc.contributor.authorMa, F.
dc.contributor.authorMueller, T.
dc.contributor.authorLin, F.
dc.contributor.authorAberle, A.G.
dc.contributor.authorBhatia, C.S.
dc.contributor.authorHoex, B.
dc.date.accessioned2014-10-07T04:27:53Z
dc.date.available2014-10-07T04:27:53Z
dc.date.issued2013-09-25
dc.identifier.citationLiao, B., Stangl, R., Ma, F., Mueller, T., Lin, F., Aberle, A.G., Bhatia, C.S., Hoex, B. (2013-09-25). Excellent c-Si surface passivation by thermal atomic layer deposited aluminum oxide after industrial firing activation. Journal of Physics D: Applied Physics 46 (38) : -. ScholarBank@NUS Repository. https://doi.org/10.1088/0022-3727/46/38/385102
dc.identifier.issn00223727
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/82311
dc.description.abstractWe demonstrate that by using a water (H2O)-based thermal atomic layer deposited (ALD) aluminum oxide (Al2O3) film, excellent surface passivation can be attained on planar low-resistivity silicon wafers. Effective carrier lifetime values of up to 12 ms and surface recombination velocities as low as 0.33 cm s-1 are achieved on float-zone wafers after a post-deposition thermal activation of the Al 2O3 passivation layer. This post-deposition activation is achieved using an industrial high-temperature firing process which is commonly used for contact formation of standard screen-printed silicon solar cells. Neither a low-temperature post-deposition anneal nor a silicon nitride capping layer is required in this case. Deposition temperatures in the 100-400 °C range and peak firing temperatures of about 800°C (set temperature) are investigated. Photoluminescence imaging shows that the surface passivation is laterally uniform. Corona charging and capacitance-voltage measurements reveal that the negative fixed charge density near the AlOx/c-Si interface increases from 1.4 × 1012 to 3.3 × 1012 cm-2 due to firing, while the midgap interface defect density reduces from 3.3 × 1011 to 0.8 × 1011 cm-2 eV-1. This work demonstrates that direct firing activation of thermal ALD Al2O3 is feasible, which could be beneficial for solar cell manufacturing. © 2013 IOP Publishing Ltd.
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentSOLAR ENERGY RESEARCH INST OF S'PORE
dc.contributor.departmentELECTRICAL & COMPUTER ENGINEERING
dc.description.doi10.1088/0022-3727/46/38/385102
dc.description.sourcetitleJournal of Physics D: Applied Physics
dc.description.volume46
dc.description.issue38
dc.description.page-
dc.description.codenJPAPB
dc.identifier.isiut000324099000007
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.