Please use this identifier to cite or link to this item:
https://doi.org/10.1088/0022-3727/46/38/385102
DC Field | Value | |
---|---|---|
dc.title | Excellent c-Si surface passivation by thermal atomic layer deposited aluminum oxide after industrial firing activation | |
dc.contributor.author | Liao, B. | |
dc.contributor.author | Stangl, R. | |
dc.contributor.author | Ma, F. | |
dc.contributor.author | Mueller, T. | |
dc.contributor.author | Lin, F. | |
dc.contributor.author | Aberle, A.G. | |
dc.contributor.author | Bhatia, C.S. | |
dc.contributor.author | Hoex, B. | |
dc.date.accessioned | 2014-10-07T04:27:53Z | |
dc.date.available | 2014-10-07T04:27:53Z | |
dc.date.issued | 2013-09-25 | |
dc.identifier.citation | Liao, B., Stangl, R., Ma, F., Mueller, T., Lin, F., Aberle, A.G., Bhatia, C.S., Hoex, B. (2013-09-25). Excellent c-Si surface passivation by thermal atomic layer deposited aluminum oxide after industrial firing activation. Journal of Physics D: Applied Physics 46 (38) : -. ScholarBank@NUS Repository. https://doi.org/10.1088/0022-3727/46/38/385102 | |
dc.identifier.issn | 00223727 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/82311 | |
dc.description.abstract | We demonstrate that by using a water (H2O)-based thermal atomic layer deposited (ALD) aluminum oxide (Al2O3) film, excellent surface passivation can be attained on planar low-resistivity silicon wafers. Effective carrier lifetime values of up to 12 ms and surface recombination velocities as low as 0.33 cm s-1 are achieved on float-zone wafers after a post-deposition thermal activation of the Al 2O3 passivation layer. This post-deposition activation is achieved using an industrial high-temperature firing process which is commonly used for contact formation of standard screen-printed silicon solar cells. Neither a low-temperature post-deposition anneal nor a silicon nitride capping layer is required in this case. Deposition temperatures in the 100-400 °C range and peak firing temperatures of about 800°C (set temperature) are investigated. Photoluminescence imaging shows that the surface passivation is laterally uniform. Corona charging and capacitance-voltage measurements reveal that the negative fixed charge density near the AlOx/c-Si interface increases from 1.4 × 1012 to 3.3 × 1012 cm-2 due to firing, while the midgap interface defect density reduces from 3.3 × 1011 to 0.8 × 1011 cm-2 eV-1. This work demonstrates that direct firing activation of thermal ALD Al2O3 is feasible, which could be beneficial for solar cell manufacturing. © 2013 IOP Publishing Ltd. | |
dc.source | Scopus | |
dc.type | Article | |
dc.contributor.department | SOLAR ENERGY RESEARCH INST OF S'PORE | |
dc.contributor.department | ELECTRICAL & COMPUTER ENGINEERING | |
dc.description.doi | 10.1088/0022-3727/46/38/385102 | |
dc.description.sourcetitle | Journal of Physics D: Applied Physics | |
dc.description.volume | 46 | |
dc.description.issue | 38 | |
dc.description.page | - | |
dc.description.coden | JPAPB | |
dc.identifier.isiut | 000324099000007 | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.