Please use this identifier to cite or link to this item: https://doi.org/10.1088/0022-3727/46/38/385102
DC FieldValue
dc.titleExcellent c-Si surface passivation by thermal atomic layer deposited aluminum oxide after industrial firing activation
dc.contributor.authorLiao, B.
dc.contributor.authorStangl, R.
dc.contributor.authorMa, F.
dc.contributor.authorMueller, T.
dc.contributor.authorLin, F.
dc.contributor.authorAberle, A.G.
dc.contributor.authorBhatia, C.S.
dc.contributor.authorHoex, B.
dc.date.accessioned2014-10-07T04:27:53Z
dc.date.available2014-10-07T04:27:53Z
dc.date.issued2013-09-25
dc.identifier.citationLiao, B., Stangl, R., Ma, F., Mueller, T., Lin, F., Aberle, A.G., Bhatia, C.S., Hoex, B. (2013-09-25). Excellent c-Si surface passivation by thermal atomic layer deposited aluminum oxide after industrial firing activation. Journal of Physics D: Applied Physics 46 (38) : -. ScholarBank@NUS Repository. https://doi.org/10.1088/0022-3727/46/38/385102
dc.identifier.issn00223727
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/82311
dc.description.abstractWe demonstrate that by using a water (H2O)-based thermal atomic layer deposited (ALD) aluminum oxide (Al2O3) film, excellent surface passivation can be attained on planar low-resistivity silicon wafers. Effective carrier lifetime values of up to 12 ms and surface recombination velocities as low as 0.33 cm s-1 are achieved on float-zone wafers after a post-deposition thermal activation of the Al 2O3 passivation layer. This post-deposition activation is achieved using an industrial high-temperature firing process which is commonly used for contact formation of standard screen-printed silicon solar cells. Neither a low-temperature post-deposition anneal nor a silicon nitride capping layer is required in this case. Deposition temperatures in the 100-400 °C range and peak firing temperatures of about 800°C (set temperature) are investigated. Photoluminescence imaging shows that the surface passivation is laterally uniform. Corona charging and capacitance-voltage measurements reveal that the negative fixed charge density near the AlOx/c-Si interface increases from 1.4 × 1012 to 3.3 × 1012 cm-2 due to firing, while the midgap interface defect density reduces from 3.3 × 1011 to 0.8 × 1011 cm-2 eV-1. This work demonstrates that direct firing activation of thermal ALD Al2O3 is feasible, which could be beneficial for solar cell manufacturing. © 2013 IOP Publishing Ltd.
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentSOLAR ENERGY RESEARCH INST OF S'PORE
dc.contributor.departmentELECTRICAL & COMPUTER ENGINEERING
dc.description.doi10.1088/0022-3727/46/38/385102
dc.description.sourcetitleJournal of Physics D: Applied Physics
dc.description.volume46
dc.description.issue38
dc.description.page-
dc.description.codenJPAPB
dc.identifier.isiut000324099000007
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

12
checked on Oct 15, 2019

WEB OF SCIENCETM
Citations

9
checked on Oct 15, 2019

Page view(s)

88
checked on Oct 12, 2019

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.