Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.apsusc.2006.05.060
DC FieldValue
dc.titleCorrelation between optical properties and Si nanocrystal formation of Si-rich Si oxide films prepared by plasma-enhanced chemical vapor deposition
dc.contributor.authorChen, X.Y.
dc.contributor.authorLu, Y.F.
dc.contributor.authorWu, Y.H.
dc.contributor.authorCho, B.J.
dc.contributor.authorTang, L.J.
dc.contributor.authorLu, D.
dc.contributor.authorDong, J.R.
dc.date.accessioned2014-10-07T04:25:24Z
dc.date.available2014-10-07T04:25:24Z
dc.date.issued2006-12-30
dc.identifier.citationChen, X.Y., Lu, Y.F., Wu, Y.H., Cho, B.J., Tang, L.J., Lu, D., Dong, J.R. (2006-12-30). Correlation between optical properties and Si nanocrystal formation of Si-rich Si oxide films prepared by plasma-enhanced chemical vapor deposition. Applied Surface Science 253 (5) : 2718-2726. ScholarBank@NUS Repository. https://doi.org/10.1016/j.apsusc.2006.05.060
dc.identifier.issn01694332
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/82101
dc.description.abstractWe have investigated the phase separation and silicon nanocrystal (Si NC) formation in correlation with the optical properties of Si suboxide (SiOx, 0 < x < 2) films by thermal annealing in high vacuum. The SiOx films were deposited by plasma-enhanced chemical vapor deposition at different nitrous oxide/silane (N2O/SiH4) flow ratios. The as-deposited films show increased Si concentration with decreasing N2O/SiH4 flow ratio, while the deposition rate and surface roughness have strong correlations with the flow ratio in the N2O/SiH4 reaction. After thermal annealing at temperatures above 1000 °C, Fourier transform infrared spectroscopy, Raman spectroscopy, and transmission electron microscopy manifest the progressive phase separation and continuous growth of crystalline-Si (c-Si) NCs in the SiOx films with increasing annealing temperature. We observe a transition from multiple-peak to single peak of the strong red-range photoluminescence (PL) with increasing Si concentration and annealing temperature. The appearance of the single peak in the PL is closely related to the c-Si NC formation. The PL also redshifts from ∼1.9 to 1.4 eV with increasing Si concentration and annealing temperature (i.e., increasing NC size). The good agreements of the PL evolution with NC formation and the PL peak energy with NC size distribution support the quantum confinement model. © 2006 Elsevier B.V. All rights reserved.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.apsusc.2006.05.060
dc.sourceScopus
dc.subjectOptical properties
dc.subjectPlasma-enhanced chemical vapor deposition
dc.subjectSilicon nanocrystals
dc.subjectSilicon oxide
dc.typeArticle
dc.contributor.departmentELECTRICAL & COMPUTER ENGINEERING
dc.description.doi10.1016/j.apsusc.2006.05.060
dc.description.sourcetitleApplied Surface Science
dc.description.volume253
dc.description.issue5
dc.description.page2718-2726
dc.description.codenASUSE
dc.identifier.isiut000243244300059
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.