Please use this identifier to cite or link to this item: https://doi.org/10.1109/22.277434
Title: Nonuniform transmission line codirectional couplers for hybrid mimic and superconductive applications
Authors: Uysal, Sener 
Turner, Charles W.
Watkins, John
Issue Date: Mar-1994
Citation: Uysal, Sener, Turner, Charles W., Watkins, John (1994-03). Nonuniform transmission line codirectional couplers for hybrid mimic and superconductive applications. IEEE Transactions on Microwave Theory and Techniques 42 (3) : 407-413. ScholarBank@NUS Repository. https://doi.org/10.1109/22.277434
Abstract: A new design approach for thin-film codirectional quadrature couplers and their applications is described. An in-depth analysis and semi-empirical design curves are presented for these couplers. Forward-wave coupling is achieved by making use of the difference between even- and odd-mode phase velocities. Modified nonuniform codirectional couplers with a dummy channel for continuously decreasing or increasing taper and employing wiggly, serpentined and smooth coupled edges have been designed and tested. It is found that a wiggly coupler can achieve a 50% length reduction compared to a smooth-edge coupler. A further 60% length reduction compared to a wiggly coupler is achieved by a serpentine coupler. Coupler performance for wiggly and serpentined configurations is computed by choosing a realizable phase velocity function for a given coupler length. Either constant 90° or -90° phase shift is possible with these couplers giving significant design flexibility in some applications. The results for a Ku-band Σ-Δ Magic-T circuit employing a 0 dB wiggly coupler and a -3 dB smooth-edge coupler are also presented in the paper.
Source Title: IEEE Transactions on Microwave Theory and Techniques
URI: http://scholarbank.nus.edu.sg/handle/10635/80827
ISSN: 00189480
DOI: 10.1109/22.277434
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.